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a b s t r a c t

Optimal control theory is one of the most important tools in the development of new therapeutic protocols

for treating infections. In this work, we present an algorithm able to deal with high-dimensional problems

with bounded controls. The optimal solution is obtained by minimizing a positive-definite treatment cost

function. Our method, based on Pontryagin’s Minimum Principle and the coordinate cyclic descent method,

allows solving problems of varied nature. In this paper, and by way of example, therapeutic enhancement

of the immune response to invasion by pathogenic attack is addressed as an optimal control problem. The

generic mathematical model used describes the evolution of the disease by means of four non-linear, ordinary

differential equations. The model is characterized by the concentration of pathogens, plasma cells, antibodies

and a numerical value that indicates the relative characteristic of an organ damaged by disease. From a system

theory point of view, drugs can be interpreted as control inputs. Therapies based on separate application

of the agents are presented in previous studies. We shall present the more general problem in this paper,

considering combined therapies and bounded controls. Finally, we present several numerical simulations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The natural human immune system exists to defend our organism

against agents such as bacteria, viruses, and our own transformed

cells such as tumor cells. Without therapy, the natural immune re-

sponse depends upon the initial concentration of pathogens. Initially,

the innate immune system provides a non-specific tactical response,

aimed mainly at killing the pathogen and starting a series of pro-

cesses like inflammation, vasodilation or blood coagulation which,

on one hand, aid the defends and on the other, slow the spread of

infection to other parts of the body. Next, a humoral response is ini-

tiated, activating B cells to become plasma cells that produce anti-

bodies that bind to the antigens, so as to destroy the pathogens. Fi-

nally, the adaptive immune system provides a strategic response that

is tailored to the primary attack. Actually, the innate, humoral and

adaptive immune responses are coupled. Without any control, four

cases of natural response appear: the subclinical case, which does not

require medical attention; the clinical case, which warrants medical

attention, but is self-healing; the chronic case, which presents an un-

stable equilibrium with degraded organ health; and the lethal case,

which results in death of the organ. When the natural defense mech-

anism fails, the need for external medication arises. In this paper,
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therapeutic treatment of a pathogenic disease process is addressed

as an optimal control problem.

In [1], the authors study a mathematical model of a disease which,

as they themselves state “is only a crude approximation and generally

requires further refinement.” Certainly, the response of the immune

system to intra-cellular microbial attack is a rather complex problem

based on producing antibodies customized to the pathogens. We re-

fer to [2] for a better understanding of the associated complex mech-

anism. Since then, numerous models of immune response to infec-

tion have been postulated [3–6]. Based on the idea presented in [1],

a model including the effect of various controls is presented in [7]

and [8]. This model has proved a good tool for studying therapeutic

protocols, and is frequently used in other studies (see for example:

[9–11]). Evolution of the disease is characterized by a mathematical

model with four non-linear, ordinary differential equations that de-

scribes concentrations of pathogens, plasma cells and antibodies, as

well as a numerical indication of patient health under the influence

of therapeutic treatment. This model of pathogenic attack facilitates

the presentation, while more complex control effects could easily be

incorporated in the optimization. This is the model that will be con-

sidered in this work and is presented in Section 2.

Focusing on the mathematical statement of the problem, several

applications of control theory to therapeutic protocols have been pre-

sented in the literature from as early as Perelson [12]. An excellent

reference for the beginning of the application of control theory to

immunology and disease is [13]. Since then, several applications of
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control theory to the immune processes have been presented in the

literature (see for example: [14–18]). In [7], an optimal solution is ob-

tained by solving the associated two-point boundary value problem

using the steepest descent gradient method. In [9], the authors use

a linearized neighboring optimal controller based on standard linear

quadratic regulator theory. In [7] and [9], the authors consider the ef-

fects of each control variable applied and optimized separately (four

baseline cases), but do not explicitly present optimizations using all

of the therapeutic agents at once. This work is further developed in

[8], in which a linear-optimal state estimator is incorporated in the

feedback therapy to minimize the effects of measurement error and

to account for missing measurements. Another relatively simple non-

linear control method is the dynamic inversion technique, which is

essentially based on the philosophy of feedback linearization. This

method was used by authors in [10] and [11] in the treatment of infec-

tious diseases. A major drawback of the dynamic inversion approach,

however, is its sensitivity to modeling errors and parameter inaccu-

racies. Moreover, the authors assumed only the availability of drugs

that kill the invading microbes and heal the affected organ, but did

not consider drugs that enhance the efficacy of the immune system.

In this paper, we propose to use Pontryagin’s Minimum Principle

(PMP) ([19,20]) and the cyclic coordinate descent method to solve

the optimal control problem and provide an optimization algorithm

that leads to the determination of the optimal solution of the gen-

eral problem with several therapies.Unlike some of the other meth-

ods, ours is based on the use of Pontryagin’s Principle, which makes

it particularly suited for the problem at hand. It allows us analyze

what happens when a different therapy is applied each time and also

to combine several therapies simultaneously. It also allows us to set

limits on the controls.

The main objectives of this paper will be: moving from a single-

agent therapy to combined therapies, considering four drugs simul-

taneously, and considering bounded controls, all of it using Stengel’s

model [7]. The optimal solution is derived by minimizing a positive-

definite cost function that penalizes large values of pathogen con-

centration, poor organ health, and excessive application of therapeu-

tic agents over a fixed time interval. Our method is able to deal with

more complex problems and, to illustrate this, Section 2 presents the

more realistic case with bounded controls (not considered by other

authors). In Section 3, we prove a necessary minimum condition for

the optimization problem. Section 4 introduces a numerical relax-

ation method (the coordinate descent method) for the solution of this

problem. In Section 5, we present several numerical simulations. Fi-

nally, Section 6 summarizes the main contributions of our paper.

2. A model of enhanced immune response

We consider a simple model for pathogenic attack on an organ-

ism and the organism’s immunological defense. We refer interested

readers to [7,9], and [8] for a better understanding of the associated

complex mechanism. The dynamic state comprises four components

(the state variables):

x1(t) : concentration of a pathogen
x2(t) : concentration of plasma cells (carriers and producers

of antibodies)
x3(t) : concentration of antibodies, which kill the pathogen
x4(t) : relative characteristic of a damaged organ: [0= healthy,

1=dead]

We now add the following idealized therapeutic control agents (the

control variables):

u1(t) : pathogen killer
u2(t) : plasma cell enhancer
u3(t) : antibody enhancer
u4(t) : organ healing factor

The four treatments aim, respectively, at killing the pathogen, neu-

tralizing its harmful effects, enhancing the efficacy of immune re-

sponse and providing healing care to the damaged organs. We seek

the best combination of these therapies. The four scalar, non-linear,

ordinary differential equations of the dynamic model (the state equa-

tions) are (considering no delay):

ẋ1(t) = (a11 − a12x3(t))x1(t) − b1u1(t)

ẋ2(t) = a21(x4(t))a22x1(t)x3(t) − a23(x2(t) − x∗
2(t)) + b2u2(t)

ẋ3(t) = a31x2(t) − (a32 + a33x1(t))x3(t) + b3u3(t)

ẋ4(t) = a41x1(t) − a42x4(t) − b4u4(t) (1)

where x∗
2
(t) is the steady-state concentration of plasma cells. aij and

bi are nonnegative (with bi �= 0) constants except a21(x4). This is a

non-linear function that describes the immune deficiency triggered

by damage to the organ:

a21(x4) =
{

cos(πx4) 0 ≤ x4 ≤ 0.5
0 0.5 ≤ x4

(2)

This definition expresses the fact that the capacity to generate plasma

cells decreases as the damage to the organ increases. Indeed, when

the health of the organ reaches a certain point (in this case, x4 = 0.5),

the production of plasma cells stops altogether.

Absent the controls, the global behavior of the (uncontrolled) sys-

tem is a function of the initial conditions. The four cases depending

on the initial conditions are: (1) The sub-clinical case, in which the

immune system acts and the pathogens are successfully destroyed

so that no medical examination is required. (2) The clinical case: if

the initial infectious dose is increased, the pathogen compromises

the immune system and a medical consultation is required. (3)

The chronic case: the pathogen and the health of the organ reach

steady-state so that the patient is not completely cured. (4) The

lethal case: the antibodies by themselves are unable to overcome

the infection, the pathogen concentration diverges and this causes

the death of the organ. The chronic case can be defined as the limit

between (2) and (4).

The state equations (1) and the sign of the coefficients aij and bi

have simple interpretations. In the first one, the pathogen has a nat-

ural tendency to grow exponentially (a11 > 0) which is limited by the

antibodies x3 and the pathogen killer (b1 > 0). The second equation

describes the evolution of the plasma cells as a non-linear function.

The influence of x4(t), x1(t), x3(t) and the steady-state concentration

of plasma cells x∗
2

is clear. In this case, the control boosts the pro-

duction of plasma cells (b2 > 0). The third equation shows how the

population of antibodies depends on the plasma cells x2 (producers

of antibodies, so a31 > 0) and also on the balance between births and

deaths of cells (a32 > 0). The pathogen, x1 has a negative impact and

the control u3 a positive one b3 > 0. In the last equation, the control

u4 with b4 > 0 tries to get a perfectly healthy organ (x4 = 0). From

(1) and prior to the pathogen attack, it is immediate to infer that the

steady-state value of antibody concentration corresponding to x∗
2

is:

x3(0) = (a31/a32)x∗
2 (3)

The state equations can be expressed in the vector form:

ẋ(t) = f (t, x(t), u(t)) (4)

where vector x is called the state of the system and u is the control

vector, which we will consider bounded:

0 ≤ umin ≤ u(t) ≤ umax; u(t) ∈ U(t), 0 ≤ t ≤ t f (5)

being [0, tf] the fixed time interval. It is worth noting that, in this

particular problem, it is not necessary to impose the constraint x(t) ≥
0. This is due to the fact that, in uncontrolled dynamics, the state is

never less than zero on its own [7].
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