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a b s t r a c t

Electrotonic interactions between cardiac cells modulate the dispersion of action potential duration (APD).

This paper provides a complete mathematical analysis of a simple model of exponential-shaped repolar-

ization in a network of electrotonically-coupled cells with different intrinsic APDs. The forward problem

consists in computing the APD map in the coupled system from the intrinsic APD map. A closed-form

algebraic formula is derived for the forward problem. The inverse problem, inferring the intrinsic APDs

from an APD map, is proved to have a unique solution (if any). Perturbation analysis leads to an efficient

and accurate Newton-based solver for this specific inverse problem. Finally, an analytical expression is

obtained for the convolution filter that solves the forward problem in one dimension. This mathemat-

ical framework forms a solid theoretical basis for future development and validation of repolarization

parameter estimation techniques in detailed models of cardiac tissue.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The action potential duration (APD) of a cardiac cell is a

commonly-used parameter to quantitatively describe cardiac cell

repolarization. The intrinsic APD of a cell is the APD measured

when the cell is (or if it were) isolated. When cells are coupled

through gap junctions, electrotonic currents tend to reduce the dif-

ferences in action potential morphology between neighboring cells.

As a result, the distribution of APD observed in a tissue may sig-

nificantly differ from the distribution of intrinsic APD characteriz-

ing local cellular properties [1,2]. This is particularly true in the

presence of intrinsic heterogeneities [3] and in small hearts [4,5].

Geometry, boundary effects [6], activation pattern [7], wavefront

curvature [8], wavefront collision [9], and possible coupling with

fibroblasts [10,11] also modulate APD dispersion.

Since altered dispersion of repolarization has been recognized

to be arrhythmogenic [12], computer models have been developed

to investigate these mechanisms. While in vivo experiments report

APD measured in tissue or in isolated cells at a limited number

of locations (e.g. biopsies), mathematical models need the spatial

profile of intrinsic properties of cardiac cells as input parameters.

The determination of the intrinsic APD of all the cells of a het-
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erogeneous tissue based on the APD of the coupled cell network

is a form of inverse problem. The corresponding forward problem

consists in predicting the APD map of the coupled system from

the intrinsic APD map. Defauw et al. [13] proposed a Gaussian

Green’s function model and a deconvolution approach to solve this

problem.

In this paper, we explore the mathematical basis of these for-

ward and inverse problems in a very simple model of repolariza-

tion in a coupled cell network. The model is amenable to analytical

calculations for both the forward and the inverse problems, and

enables the study of existence and uniqueness of the solution to

the inverse problem.

2. Mathematical model

2.1. Minimalist cellular model

The simplest model of repolarization is given by an exponential

decay. In that model, the membrane potential u is zero at rest, in-

stantaneously rises to 1 when the cell is stimulated above thresh-

old (at t = 0), and then u(t) follows the (nondimensional) equation:

du

dt
= −ku, u(0) = 1, (1)

where k > 0 is the only parameter of the cellular model. The shape

of the resulting action potential u(t) = exp(−kt) is compared to

that of a detailed atrial membrane model in Fig. 1. Although at
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Fig. 1. Action potential morphology: Nygren et al. ionic model [15] (solid line) and

exponential model (red dashed line). (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article).

least four state variables may be needed to replicate the morphol-

ogy of a wide range of cardiac cell action potentials [14], the expo-

nential model still reproduces the most basic feature of triangular-

like atrial action potentials. Complex multi-variable models (except

possibly a sum of exponentials) are unlikely to enable analytical

calculations.

The action potential duration (APD), may be expressed as a

function of the parameter

a =
∫ +∞

0 t u(t)dt∫ +∞
0 u(t)dt

(2)

where the integration starts at depolarization time (t = 0). This

quantity represents the time interval between the onset of depo-

larization and the center of mass of the action potential waveform.

In an isolated cell with parameter k, we have a = 1/k, which cor-

responds to the time constant of the exponential, or to the APD

measured at 63% repolarization. The APD might be expressed as γ
· a, where γ ≈ 2 for a spike-and-dome action potential with steep

phase 3 repolarization and γ ≈ 3 for a triangular-shaped action

potential. In our case of exponentially-decaying action potentials,

1/a represents an estimate of the apparent parameter k of a cell

with action potential u(t). The choice γ = 3 would correspond to

an estimate of the APD at 95% repolarization. In the sequel, for the

sake of simplicity, the parameter a will be referred to as APD.

This unusual choice of APD definition and the very simplified

action potential shape are (probably) necessary conditions to en-

able the derivation of exact analytical expressions in a network

of coupled cells. Section 6 illustrates how the approach can be

extended to more complex models and other definitions of APD

when only numerical solutions are sought.

2.2. Network of coupled cells

If n cells with parameters k1, . . . , kn are coupled through

gap junctions, the evolution of the membrane potentials

u1(t), . . . , un(t) is governed by the system

dui

dt
= −kiui −

n∑
j=1

gi j(ui − uj), ui(0) = 1, (3)

where gi j = g ji ≥ 0 represents the coupling between cell i and cell

j. The initial condition corresponds to the situation where all cells

are stimulated simultaneously. This choice enables us to focus on

repolarization. This equation is rewritten in matrix form

du

dt
= −Ku − Gu (4)

where the vector u contains the components ui, the diagonal ma-

trix K the components ki and the symmetric semi-positive definite

G the coupling conductances. The n-vector (1, 1, . . . , 1) will be de-

noted by 1. Using that notation, G1 = 0. The consequence is that

( · t means transposed)

1t du

dt
= −1t Ku = −kt u. (5)

In the limit where all coupling conductances are scaled up until

they uniformly tend to +∞, all the ui become identical to prevent

an infinite current from flowing between the cells and the average

of the membrane potentials follows the evolution of an isolated

cell with k = (k1 + · · · + kn)/n.

The evolution of the coupled system can be easily calculated

using the eigenvalues λj > 0 and eigenvectors vj of the symmetric

positive definite matrix M = K + G

u(t) = exp(−Mt) 1 =
n∑

j=1

exp(−λ jt) v jv
t
j · 1. (6)

3. Forward problem

The purpose of this section is to provide an analytical expres-

sion for the APD of all the coupled cells, a = (a1, . . . , an), given

their parameters k = (k1, . . . , kn), that is, to determine the map-

ping a = A(k, G).

3.1. Equation for the action potential duration

After substitution of the solution (6), the numerator of (2) is

given by

∫ +∞

0

t u(t)dt =
n∑

j=1

1

λ2
j

v jv
t
j · 1 = M−2 · 1 (7)

since the matrix M−2 has eigenvectors vj with eigenvalues λ−2
j

.

Similarly,

∫ +∞

0

u(t)dt =
n∑

j=1

1

λ j

v jv
t
j · 1 = M−1 · 1. (8)

If the matrix A is defined as the diagonal matrix containing the

elements of a in its diagonal, then

A M−1 1 = M−2 1, (9)

or, equivalently,

(K + G)2 A (K + G)−1 1 = 1. (10)

This equation relates, for a given distribution of coupling, the APD

(A) to the intrinsic parameters (K). The vector a can therefore be

computed by solving two linear systems instead of simulating the

evolution.

In the absence of coupling (G = 0), A = K−1, that is, ai = 1/ki.

These values are referred to as the intrinsic APD.

3.2. Scaling law

It appears that the evolution equation (3) is invariant when the

conductances gij are scaled by g−1, the parameters ki by g−1 and

the time by g. As a result,

A(k, G) = g−1A(k/g, G/g). (11)

This enables the elimination of one parameters for explicit

calculations.



Download English Version:

https://daneshyari.com/en/article/4499913

Download Persian Version:

https://daneshyari.com/article/4499913

Daneshyari.com

https://daneshyari.com/en/article/4499913
https://daneshyari.com/article/4499913
https://daneshyari.com

