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a b s t r a c t

Elementary flux modes (EFMs) are vectors defined from a metabolic reaction network, giving the connec-

tions between substrates and products. EFMs-based metabolic flux analysis (MFA) estimates the flux over

each EFM from external flux measurements through least-squares data fitting. The measurements used in

the data fitting are subject to errors. A robust optimization problem includes information on errors and

gives a way to examine the sensitivity of the solution of the EFMs-based MFA to these errors. In general,

formulating a robust optimization problem may make the problem significantly harder. We show that in

the case of the EFMs-based MFA, when the errors are only in measurements and bounded by an interval,

the robust problem can be stated as a convex quadratic programming (QP) problem. We have previously

shown how the data fitting problem may be solved in a column-generation framework. In this paper, we

show how column generation may be applied also to the robust problem, thereby avoiding explicit enu-

meration of EFMs. Furthermore, the option to indicate intervals on metabolites that are not measured is

introduced in this column generation framework. The robustness of the data is evaluated in a case-study,

which indicates that the solutions of our non-robust problems are in fact near-optimal also when robust-

ness is considered, implying that the errors in measurement do not have a large impact on the optimal

solution. Furthermore, we showed that the addition of intervals on unmeasured metabolites resulted in

a change in the optimal solution.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A metabolic reaction network is represented by the stoichio-

metric matrix A, which together with the flux vector (v) gives the

overall change in concentration of each metabolite (C). The rows of

the stoichiometric matrix (A) refer to either external metabolites

(Ax) or internal metabolites (Ai). The flux space is given by a set of

vectors v that satisfy the pseudo-steady state assumption and flow

direction assumption on the internal metabolites,{
v :

[
Ai

−Ai

−I j

]
v ≤

[
0
0
0

]
, j ∈ Jirrev

}
, (1)

where Ij is a reduced identity matrix with ones only when j ∈ Jirrev

and Jirrev is the set of irreversible reactions. When all reactions in

the network are irreversible, the set defined by (1) is a cone where
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any ray can be written as a non-negative linear combination of the

extreme rays [1, Part I.4 Theorem 4.8].

EFMs contain information on how extracellular metabolites are

connected by detailing which reactions are required for their up-

take or production [2]. They are vectors in the flux space, each EFM

includes only a minimal set of reactions and is nondecomposable

[3]. Further, any vector in the flux space can be denoted as a non-

negative linear combination of the EFMs [4,5],

v =
L∑

l=1

wlel = Ew, γ ≥ 0, (2)

where e denotes a single EFM and the matrix E contains the EFMs

as columns. In this sense the EFMs generate the flux space and

are related to the definition of extreme rays in the cone (1) with

only irreversible reactions. In fact when a metabolic network only

has irreversible reactions the EFMs and the extreme rays of the

cone (1) are equal [6]. We assume, without loss of generality, that

the metabolic network has only irreversible reactions, i.e., vj ≥
0 ∀j. When the network includes reversible reactions finding all

the EFMs is equivalent to finding all the extreme rays of a cone
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in an extended space where all reactions are irreversible [6,7]. For

modest-sized networks enumeration of EFMs is possible and com-

puter programs exist for that purpose, e.g., Metatool [8]. However,

with increased network size enumeration of EFMs becomes pro-

hibitive [3]. Thus focus has shifted to identify only a subset of the

EFMs [9–11].

EFMs-based MFA uses the decomposition of v given by (2) to

create a macroscopic network (AxE). The macroscopic fluxes (w) are

then adjusted so that the flux in the network fit the cell specific

external flux measurements (Q), i.e.,

minimize
w

1

2
‖Q − IAxEw‖2

2

subject to w ≥ 0. (3)

The formulation given by (3) includes multiple repetitions of the

same experiments, i.e., if qk are results from one repetition, k,

then QT = [qT
1 , . . . qT

d
], where d denotes the number of repetitions.

I is a stacked identity matrix consisting of d identity matrices of

size Mext (number of external metabolites) or I = [IMext
, . . . , IMext

]T ,

where IMext
is repeated d times.

EFMs-based MFA as given by (3) requires the whole set of EFMs

(i.e., systematic enumeration of all the EFMs) limiting the appli-

cation to simplified networks. Methods that can solve the EFMs-

based MFA problem without enumerating EFMs exist. One method

identifies EFMs beforehand through a series of linear programming

(LP) problems [12]. This method is based on the existence of a fea-

sible flux vector v, an assumption we will examine in Appendix A.

In our previous work we introduced a more integrated approach

that enables identification of EFMs in conjunction with solving the

EFMs-based MFA problem [13]. This method generates a subset of

EFMs specifically relevant for the available experimental data. The

approach was based on an optimization technique named column

generation [14], in which large networks can be handled by rely-

ing on a master problem and a subproblem that are solved iter-

atively. The subproblem gives the master problem a new column

every iteration until the solution of the subproblem indicates that

the solution of the master problem is optimal to the full optimiza-

tion problem. In this manner a sub-set of the EFMs relevant with

respect to the extracellular flux measurements could be identified

without enumeration of EFMs. In practice, only a small subset of

EFMs are generated by the column generation approach. This was

the case in [13] and we demonstrate here that it is also true for

the robust formulation.

In this work we consider the uncertainty in the EFMs-based

MFA model posed by the errors in measurements together with

identifying EFMs via column generation. The experimental mea-

surements used to calculate the fluxes in Q in the EFMs-based

MFA problem (3) are prone to errors, which have been stated to

reach at least 20% [15]. It is important to know how much the

data uncertainty affects the solution of the optimization problem.

Robust optimization can be used to consider the effects of data

uncertainty on the solution of the optimization problem in a com-

prehensive way. For more information on robust optimization see

[16] or [17]. The uncertainties could be considered by a stochastic

formulation or a worst-case scenario formulation. With stochas-

tic formulation the data uncertainty is described by probability

distributions, whereas worst-case scenario formulation represents

uncertainty by a set where the uncertain parameters lie. The

worst-case scenario formulation has the advantage of a simpler

problem formulation and that formulation of the probability distri-

bution of the uncertainty is not needed. In this paper, we consider

the worst-case scenario formulation and to simplify the exposition

refer to this as robust optimization. A classical approach to assess

uncertainty is sensitivity analysis where the sensitivity of the solu-

tion to errors in the data is quantified. Sensitivity analysis is a local

approach, typically valid for small errors, whereas robust optimiza-

tion can handle large uncertainties in a worst-case sense. Thus

a robust solution provides immunization against the uncertainty

present in the data. We therefore derive a robust formulation of

the EFMs-based MFA, using the worst-case scenario formulation.

The sensitivity of the solution with respect to measurement errors

can be considered with this robust formulation. The error on each

measurement is assumed bounded, and the aim is to minimize

the objective function subject to the most unfavorable error in

the uncertainty set. Previous work on robust least-squares mainly

focuses on errors in both the measurements and the model, in

general those formulations are difficult to solve [18].

The robust optimization problem can be used to evaluate the

results of the EFMs-based MFA with respect to how sensitive it

is to errors. That is by comparing the robust solution to the non-

robust solution, where the non-robust solution is the original opti-

mization problem, which does not include the robust formulation.

If the solutions are similar, then the non-robust problem is nearly

optimal to the robust problem, that is almost self robust. If they

are not similar, the non-robust solution is sensitive to the errors,

which is not good for the validity of the solution, especially since

the errors may be rather substantial.

The purpose of this paper is to formulate the robust problem

of the EFMs-based MFA, to solve the robust problem with col-

umn generation, and to apply the robust problem to case stud-

ies. In particular the aim is to see if the solution to EFMs-based

MFA is sensitive to measurement errors, especially with respect

to the EFMs used in the solution. The paper is outlined as fol-

lows. In Section 2 we present a robust formulation of the EFMs-

based MFA, where column generation can also be applied, along

with a version in which intervals for unmeasured metabolites are

included. In Section 3 we present some results comparing the

solutions of the robust problem to the EFM-based MFA for two

case-studies.

2. Robust formulation of the EFMs-based MFA

This section contains the main results of this work, here we

present an optimization problem that can be used to analyze the

model’s sensitivity to errors. The optimization problem is a robust

formulation of the EFMs-based MFA problem, where errors in Q are

taken more directly into consideration. For this purpose we make

use of a technique named robust optimization [16,17]. The robust

optimization problem is to minimize the residual when the errors

in data give a worst-case scenario outcome, i.e., the errors in data

are such that the residual is maximized.

Inherent in least-squares is the assumption that the errors are

bounded by the two-norm, i.e., ‖�Q‖ ≤ β . In fact, when the errors

are assumed bounded by the two norm, the least squares prob-

lem gives the same solution as its robust variant. However, in this

work we assume that the errors in Q are bounded by an interval,

a more realistic assumption with respect to the types of errors in

the model. This assumption of interval errors might cause the so-

lution to change. The interval is such that Qreal = Q + �Q where

�Qi = [�qT
1
, . . .�qT

d
]T and |�qki| ≤ θ ki|qki|, k refers to a specific

repetition and i to the metabolite. In order to simplify notation

θ is stacked in the same way as Q and �Q, the subindex s then

refers to a specific element in those vectors. Note that in general

the percentage of error on each metabolite is the same for all rep-

etitions, i.e.,θk1i = θk2i for all k1 and k2. The robust problem is then

given by

minimize
w≥0

maximize
|�Qs|≤θs|Qs|

1

2
‖IAxEw − Q + �Q‖. (4)

Formulating robust problems as an optimization problems that can

be solved is not always possible [18]. However, in Appendix B

we show how problem (4) can equivalently be formulated as a
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