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a b s t r a c t

Homeostasis is known to be absolutely critical to the sustainability of living organisms. At the heart

of homeostasis are various feedback loops, which can control and regulate a system to stay in a most

favourable stable state upon the influence of various disturbance. While variability has emerged as a key

factor in sustainability, too much variability could however be detrimental. It is thus absolutely crucial to

understand the effect of fluctuation in different feedback loops. While modelling technique has achieved

a great advancement to understand this issue, too a complicated model however often prevents us from

disentangling different many processes.

Here, we propose a novel model to gain a key insight into the effect of variability in feedback on self-

sustained oscillation. Specifically, by taking into account variation in model parameters for self-excitation

and nonlinear damping, corresponding to positive and negative feedback, respectively, we show how fluc-

tuation in positive or negative feedback weakens the efficiency of feedback and affects self-sustained

oscillations, possibly leading to a complete breakdown of self-regulation. While results are generic and

could be applied to different self-regulating systems (e.g. self-regulation of neuron activity, normal cell

growth, etc.), we present a specific application to heart dynamics. In particular, we show that fluctuation

in positive feedback can lead to slow heart by either amplitude death or oscillation death pathway while

fluctuation in negative feedback can lead to fast heart beat.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Homeostasis is known to be absolutely critical to the sustain-

ability of living organisms (e.g. [1]). Simply put, it means ‘not too

much, not too little, but just right.’ More technically, it represents

the ability of a system which can control and regulate itself to stay

in a most favourable stable state upon the influence of various dis-

turbance. This is entailed by the presence of two (or more) oppos-

ing and complementary forces (or requirements) in a system and

by the adjustment of these forces when perturbed to restore a sub-

tle balance through different positive or negative feedback loops.

Self-regulation breaks down when a system is no longer under the

control of such feedback mechanism, e.g., when one of the forces

is overpowered by the other. For instance, normal cells have the

ability of self-regulating their growth by maintaining the balance

between growth and death, and its breakdown can lead to the

overgrowth of cells and consequently tumour cells. Tumour cells

can thus result not only from the loss of the ability of inhibiting

growth (e.g. the loss of tumour suppressor genes) but also from
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the activation of uncontrolled growth factor (e.g. the activation of

oncogenes) [2].

Another interesting example is self-regulation of neural activity

where the balance between excitatory and inhibitory neurons is

crucial for the maintenance of normal function of neuron. Either

the over-excitation of excitatory neuron or the under-activation

of inhibitory of neuron can lead to abnormal brain activity such

as eclipse [3]. One more, but not the last, example would be a

normal function of heart and heart rhythm as a result of self-

regulation, and this will be of our main focus regarding applica-

tion of our results later in this paper. With myriad of similar ex-

amples found in living organisms, self-regulation—a fundamental

feature of homeostasis—is also at the heart of the emergence and

maintenance of self-organised structures in many other complex

systems, including large-scale flows, magnetic fields, and vortices

in astrophysical and laboratory fluids, environments, and chemical

reactions (e.g. see [4–8]).

Our work is motivated to understand how homeostasis is af-

fected when one of the feedback loops becomes less effective due

to stochasticity (fluctuation). While this can be caused by the in-

trinsic problem with chemical, biological, or physiological process

itself (e.g. ion channels, gene expression, tissue damage, etc.), it

also seems to be an inevitable consequence of a system involving
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multi-scale processes where fluctuation arises not only from the

inhomogeneity and heterogeneity in the system but also from the

environmental influence. In view of emerging evidence of variabil-

ity and stochasticity and their relevance in many systems [5–13], it

is timely to undertake a systematic investigation of this issue and

quantify the effect of fluctuations in different feedback loops in a

self-sustained oscillator.

To this end, we revisit the Van der Pol oscillator and study the

effect of fluctuations in the model parameters for positive (self-

amplification) and negative feedback (nonlinear damping). We in-

troduce our model in Section 2. Section 3 reports on the effect of

modulation in self-amplification. Section 4 presents the results on

the modulation in nonlinear damping and the loss (i.e. degrada-

tion) of self-regulation. Section 5 discusses implications for heart

dynamics. Conclusion and discussion are provided in Section 6.

Appendix A and Appendix B include linear stability analysis utilis-

ing the Laplace transformation and Mathieu equation. Implication

of our results for a long term behaviour in regards to heart vari-

ability is briefly discussed in Appendix C. We note that Sections 3

and 4 contain rather detailed mathematical analysis, and readers

who are mainly interested in applications are welcome to go to

Section 5 after skimming through Section 2.

2. Model

The Van der Pol oscillator is a prototypical mathematical model

for self-sustained oscillations. Since originally proposed by Van der

Pol to understand oscillations in nonlinear electric circuits, it has

been developed further to investigate human heart and the stabil-

ity of heart dynamics [14–24] and extended to different disciplines

(e.g. biology, fluids/plasmas, environments, engineering) [25]. This

model is described by the following ordinary differential equation

(ODE):

d2x

dt2
+ (−α + βx2)

dx

dt
+ ω2

0x = 0. (1)

Here, α and β are control parameters which represent the effi-

ciency of amplification and nonlinear damping, respectively; ω0 is

the natural frequency of our system in the absence of the am-

plification and damping (e.g. when α = β = 0). In terms of self-

regulation mentioned previously, α and β represent the efficiency

of positive and negative feedback, respectively; the positive feed-

back −α dx
dt

leads to self-amplification (negative damping) with ex-

ponential growth of a linear solution while the negative feed-

back βx2 dx
dt

due to nonlinear damping limits the growth to a fi-

nite value.1When a system is well self-regulated, self-amplification

and nonlinear damping act together in balance, and lead to self-

sustained relaxation oscillation as a limit cycle. This is modelled

by using constant positive values for α and β . However, when

there is some dysfunction in either positive or negative feedback

loop (see Section 4 for further discussion), its efficiency is reduced,

causing a mismatch between the two (such as time delay in bal-

ance). We model this inefficiency in either feedback by including a

time-varying part in α or β , respectively. As noted in Section 1, in

continuous systems, Eq. (1) is a mean-field equation for the time-

evolution of large-scale observables while control parameters cap-

ture the overall effect of unresolved small-scale dynamics.

To gain a key insight into the effect of fluctuations in α and

β , we, for simplicity, take α and β to consist of the constant and

oscillatory parts as follows:

α = μ1 + ε1 sin (ω1t), (2)

1 To be specific, for small x <
√

α/β, −α + βx2 is negative leading to the growth

of x while for large x >
√

α/β, −α + βx2 becomes positive, causing damping of x.

β = μ2 + ε2 sin (ω1t). (3)

Here, μ1 and μ2 are constant parts; ε1 and ε2 are the modulation

amplitude and ω1 is the angular frequency of the modulation.2 By

using the unit where the natural frequency ω0 = 1 (see later), and

by varying values of μ1, μ2, ε1, ε2, and ω1, we investigate the

effect of the periodic modulation of α and β on limit cycle oscilla-

tions in terms of frequency, amplitude, and variability. As our main

purpose is to gain a key insight into implications for homeostasis

(heart dynamics), we focus on qualitative behaviour of bifurcations

upon the change of parameters, leaving a more detailed study on

bifurcation sequence for future work. We explore the possibility of

the breakdown of self-regulation and highlight a crucial role of ef-

ficient feedback in sustainability.

We should note that for nonlinear oscillators, the effect of fluc-

tuations has been studied previously by many authors where fluc-

tuations appear as multiplicative and/or additive noise. In partic-

ular, much attention has been paid to the case when the natu-

ral frequency ω0 contains a random part, with a strong interest

in parametric instability/resonance, and/or stochastic resonance. In

contrast, the effect of fluctuation on parameters α and β has been

studied much less (e.g. see [26,27]), which will be the focus of

this paper. When α contains fluctuations, the Van der Pol equa-

tion is essentially similar to the Mathieu equation [27] as detailed

in Appendix B. Also, previous works showed that a periodic addi-

tive forcing to the Van der Pol oscillator leads to devil’s staircase

with chaos sandwiched between adjacent period doublings (e.g.

see [28]). In the following, we show that similar devil’s staircase

also results from a multiplicative noise.

3. Effect of fluctuation in positive feedback

Before presenting nonlinear results, we briefly comment on a

linear oscillator in the absence of nonlinear term (i.e. β = 0) in Eq.

(1) to help our understanding in general. As detailed in Appendix A

and Appendix B, fluctuation in α can help a linear solution grow

exponentially via parametric instability.3 For α = ε1 sin ω1t, the

critical value of ε1 for the onset of instability depends on ω1,

μ1 and the frequency ω of excited mode. In Appendix A and

Appendix B, we provide some detailed analysis on this parametric

resonance and instability by a perturbative analysis on i) a linear

dispersion relation derived from the interaction of the two adja-

cent modes coupled through the periodic modulation and ii) the

standard Mathieu equation obtained after the transformation of

variables. In particular, we show that the mode of the frequency

ω = ω1/2 becomes unstable for nonzero ε1 when ω1 = 2ω0, the

instability occurring for 2ω0 − 1
2 ε1 < ω1 < 2ω0 + 1

2 ε1 (see Eqs. (12)

and (24)). Note that while this analysis is strictly valid only for

sufficiently small ε1 (e.g. ε1/2 < ω0), it will prove useful in un-

derstanding a nonlinear response of our system to periodic modu-

lation in the following subsections. For the purpose of elucidating

the effect of the modulation in α, we keep β = 1 in the following

subsections.

3.1. α = ε1 sin(ω1t) and β = 1

In the presence of nonlinear damping term (β �= 0), an expo-

nentially growing solution saturates to finite amplitude and the

solution forms a limit cycle. We note that this limit cycle can be

2 The signs of ε1 and ε2 do not affect our results.
3 Note that effect of fluctuation in damping parameter tends to be more robust

compared to that in fluctuation in oscillation frequency ω0. For instance, the pre-

vious study [26] has shown that random (Gaussian) fluctuation μ1 can give rise

to the growth of the first moment (e.g. the average x), in contrast to the case of

random frequency whose effect appears in higher order moment (e.g. 〈x2〉).
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