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a b s t r a c t

This paper extends the model for acid-mediated tumour invasion with chemotherapy intervention examined

in part I. The model presented in part I considers the interaction between tumour cells, normal cells, acid

and drug in a well mixed (i.e. spatially homogeneous) setting, which is governed by a system of nonlinear

differential equations. The model examined here removes the assumption that the populations are spatially

homogeneous resulting in a system of nonlinear partial differential equations. Numerical simulations of this

model are presented for different treatment methods displaying several possible behaviours. Asymptotic ap-

proximations are also derived for a special case of the treatment method and set of parameter values. This

analysis then allows us to draw conclusions about the effectiveness of treating acid-mediated tumours with

chemotherapy.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This article seeks to extend the model proposed in [21], that con-

siders the acid-mediation hypothesis with the added interaction of a

tumour treatment protocol, to a spatially heterogeneous setting. The

acid-mediation hypothesis is the assumption that tumour invasion

is facilitated by acidification of the region around the tumour-host

interface caused by aerobic glycolysis, also known as the Warburg ef-

fect [45]. This acidification creates an inhospitable environment and

results in the destruction of the normal tissue ahead of the acid resis-

tant tumour, thus enabling the tumour to invade into the vacant re-

gion. This hypothesis was first examined mathematically by [15] with

a system of reaction-diffusion equations that consider the interaction

between the tumour, host and acid. Recent extensions to this model

include the reduction of acid by use of a bicarbonate solution [36],

the addition of tumour sensitivity to the presence of acid [35] and

the use of an acid production term that is a nonlinear function of the

tumour cell density [22]. The acid-mediation hypothesis was exam-

ined in [39], where a cellular automaton based model was used that

considered the effect vascular densities and tumour metabolism had

in determining optimal conditions for tumour invasion. Interaction of

the extracellular matrix and matrix metalloproteinases was consid-

ered in [33] where it was suggested there exists an optimal level of

tumour aggressiveness. An experimental investigation of the tumour
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microenvironment in [10] showed evidence that increased acidity of

tumours increases invasion and furthermore, this invasion could be

slowed by decreasing the acidity with a regular administration of an

acid buffer such as bicarbonate solution. We note that the majority of

articles that consider the acid-mediation hypothesis have examined

the process as a relatively closed system, that is, without considering

some form of external intervention such as treatment of the tumour

with chemotherapy. Hence we propose and subsequently analyse a

model for acid-mediated tumour invasion whilst treatment for the

tumour is being administered. We determine the conditions in our

model when the treatment is effective/ineffective, how treatment af-

fects the strength of the acid-mediated invasion and if a treatment

can slow, stop or reverse the invasion of a tumour.

There are many models that have considered chemotherapy and

the corresponding effect on the growth of solid tumours. Continuum

models have been considered in which the dynamics of total cell pop-

ulations and average chemotherapy drug concentration were exam-

ined by employing the use of ordinary differential equations (ODEs),

some examples include [4,7,8]. There have been recent models that

considered the addition of an immune response in tumour cell and

chemotherapy models [6,8] encouraged by experimental results sug-

gesting an important impact of the host immune response on the ef-

fectiveness of a chemotherapy treatment. The effects of normal cell

populations in models that consider chemotherapy have largely been

neglected. Hence it is an aim of this article to determine whether

the presence of normal cells can alter the perceived effectiveness of

chemotherapy.

The model considered in [21] examines the acid-mediation hy-

pothesis with chemotherapy by the use of a system of nonlinear
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ordinary differential equations that examines the interaction of tu-

mour cells, normal cells, acid and a cytotoxic chemotherapy drug.

This model considers Lotka–Volterra dynamics for the tumour and

normal cells, the tumour is destroyed by the presence of chemother-

apy drug which is infused as a function of time and normal cells

are destroyed by interacting with acid. We wish to consider a spa-

tially heterogeneous model that extends the simpler spatially homo-

geneous model presented in [21] due to two key reasons, the first of

which being the unrealistic nature of the assumption underpinning

a spatially homogeneous model. The use of a spatially homogeneous

model assumes that the populations considered are well mixed and

hence have no significant spatial variations. However we are propos-

ing to consider tumour and normal tissue populations and, in a reduc-

tionist view, tumours form as insular masses surrounded by normal

cells [19,20]. Hence the assumption that these populations are well

mixed is not realistic. The second important consideration in using a

spatially heterogeneous model is the extra insight that can be gained

about the key processes governing the dynamic behaviour of the sys-

tem, an example of this being the acid-mediation hypothesis. Should

the model considered by [15] have been modelled in a spatially ho-

mogeneous setting with no influence of spatial variances, then due

to the governing dynamics of the production of H+ ions, one would

determine very similar behaviour between a model that considers

acid-mediation and one that considers purely population competi-

tion. One could conclude that the additional tumour aggressiveness

associated with the acid-mediation hypothesis as being attributed to

the tumour population having more dominant population competi-

tion dynamics. However in the spatio-temporal model as considered

by [35] this confusion could not so easily be made with behaviours

such as the development of an interstitial gap, which occurs in in-

vading tumours where the H+ ions have a strong destructive effect,

only being possible with the inclusion of the acid-mediation hypoth-

esis. Whilst we still acknowledge that much insight can be gained

from the spatially homogeneous model, much of which can be used

to predict behaviour in a spatially heterogeneous setting, we feel that

to truly determine the behaviour of the system and the important

components that govern it, the model must be considered in a spatio-

temporal setting.

This paper is organised as follows. In Section 2 we discuss the for-

mulation of our model and provide details of a corresponding non-

dimensionalisation. In Section 3 we examine the model numerically

and present some analytical and heuristic analysis of the results.

Section 4 presents the arguments for the determination of asymp-

totic approximations to the solutions of a special case of the model. A

discussion of results and some concluding remarks are presented in

Section 5.

2. Model formulation

Here, the basic assumptions used to develop the model in [21] are

recalled along with additional assumptions required due to the spa-

tially heterogeneous populations.

(i) Both normal and tumour cells are governed by logistic growth

in the absence of any kind of intervention [8,9,15];

(ii) Normal cells and tumour cells undergo cell diffusion. Further-

more, the diffusion coefficients may be dependent on the other

respective cell density [15];

(iii) We consider a population competition relationship between

the normal and tumour tissues [35];

(iv) The tumour tissue produces H+ ions as a result of aerobic gly-

colysis [15,35] at a rate proportional to the tumour cell density;

(v) The normal tissue interacts with the excess H+ ions, leading to

a death rate proportional to the H+ ion concentration [15,35];

(vi) Excess H+ ions diffuse chemically with a constant diffusion

rate and are produced at a rate proportional to the tumour cell

density. Moreover, an uptake term is included to take account

of mechanisms for increasing pH (e.g. buffering and large-scale

vascular evacuation) [15];

(vii) Since chemotherapy is a systemic treatment, the simplifying

assumption is made that the chemotherapy drug is infused ho-

mogeneously across the system at a rate given by a function of

time. A term is included for removal of drug from the system

by metabolic processes [4,8] and the drug is assumed to diffuse

chemically at a constant rate;

(viii) The tumour tissue interacts with the chemotherapy drug lead-

ing to destruction of tumour tissue at a rate proportional to the

concentration of drug [4,8];

(ix) The chemotherapy drug concentration is decreased by interac-

tion with the tumour tissue [4].

Let the populations at time s (in seconds) and position y (in cm)

be denoted by:

• N1(y, s), normal cell density (in cells cm−3);
• N2(y, s), tumour cell density (in cells cm−3);
• H(y, s), excess H+ ion concentration (in M);
• C(y, s), chemotherapy drug concentration (in M).

Consider the following model

∂N1

∂s
= ∇ · [D1(N2)∇N1]︸ ︷︷ ︸

cell movement

+ r1N1

(
1 − N1

K1

− α1
N2

K2

)
︸ ︷︷ ︸

logistic growth with cellular competition

− d1HN1︸ ︷︷ ︸
normal cell death by acid

, (2.1)

∂N2

∂s
= ∇ · [D2(N1)∇N2]︸ ︷︷ ︸

cell movement

+ r2N2

(
1 − N2

K2

− α2
N1

K1

)
︸ ︷︷ ︸

logistic growth with cellular competition

− d2CN2︸ ︷︷ ︸
tumour death by drug

, (2.2)

∂H

∂s
= D3∇2H︸ ︷︷ ︸

acid diffusion

+ r3N2︸︷︷︸
acid production

− m3H︸︷︷︸
acid uptake

, (2.3)

∂C

∂s
= D4∇2C︸ ︷︷ ︸

drug diffusion

+ rI(s)︸︷︷︸
drug infusion

− m4C︸︷︷︸
drug decomposition

− d4N2C︸ ︷︷ ︸
drug−tumour interaction removal

. (2.4)

We have used the convention of the subscripts for each parameter

corresponding to the relevant equation: r represents growth rate; K

represents carrying capacity; α represents population competition

strength; d represents rate of decrease due to interaction; D is diffu-

sion coefficient; m represents decrease through system mechanisms.

Examples of possible values and range of values for these parameters

can be found in Table C.1 in Appendix C. Note that we have assumed

the use of a stage-specific drug that targets rapidly dividing cells,

which will primarily target tumour cells. Since normal cell division is

a well regulated process [20] we have assumed that the chemothera-

peutic effect on the normal tissue can be approximated by reducing

the normal tissue’s competitive effect and resistance to the presence

of acid.

In the models considered by [15,22] and [35] the following diffu-

sion coefficients were used

D1(N2) = 0, D2(N1) = D

(
1 − N1

K1

)
; D > 0.

These were chosen since it was assumed that the normal cells were

well regulated and hence the motility would be negligible. Further-

more, it was assumed that the presence of normal cells inhibited the
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