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a b s t r a c t

Semi-analytical solutions for the diffusive Lotka–Volterra predator–prey system with delay are considered in

one and two-dimensional domains. The Galerkin method is applied, which approximates the spatial structure

of both the predator and prey populations. This approach is used to obtain a lower-order, ordinary differen-

tial delay equation model for the system of governing delay partial differential equations. Steady-state and

transient solutions and the region of parameter space, in which Hopf bifurcations occur, are all found. In

some cases simple linear expressions are found as approximations, to describe steady-state solutions and

the Hopf parameter regions. An asymptotic analysis for the periodic solution near the Hopf bifurcation point

is performed for the one-dimensional domain. An excellent agreement is shown in comparisons between

semi-analytical and numerical solutions of the governing equations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Population models, which are used in a variety of biological

and ecological applications, have been studied extensively for many

decades. It is often important that these models include both time-

delay and spatial diffusion to reflect the dynamic behaviour of the

models, based on past history, and the trend of a species to migrate to

the least densely populated areas. Delay reaction–diffusion models,

which display oscillatory solutions, can describe the lagged response

to past behaviour and the spatial structure of certain chemical, bio-

logical and ecological systems. Some examples include the delayed

logistic diffusion equation which represents the general framework

of the growth dynamics of a single species and the delayed diffusive

Lotka–Volterra predator–prey systems for multiple population mod-

els [4,9,21].

Lotka and Volterra [15] proposed a model for predator–prey sys-

tems to describe the population of sharks and fish in the Adriatic Sea

during World War I. This model can also be used to describe chemi-

cal reactions and physical systems such as resonantly coupled lasers

[11,15]. Many theoretical and experimental studies have considered

the stability of the Lotka–Volterra predator–prey model. For exam-

ple, Faria [8] considered the system with one and two delays. They

studied the effect of diffusion and obtained the stability of the posi-

tive equilibrium and the location of Hopf bifurcation points. Yan and

Chu [22] analysed the stability for a delayed Lotka–Volterra predator–
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prey system and found conditions for oscillatory solutions to occur.

They also examined the stability of the oscillatory solutions.

Chen et al. [5] considered the diffusive Lotka–Volterra predator–

prey system with two delays. By analyzing the characteristic equa-

tions, the authors investigated the stability of Hopf bifurcations and

the coexistence equilibrium. They found that the positive equilibrium

point of the system could be destabilized through a Hopf bifurca-

tion as the delay increases in magnitude. Shenghu [20] studied the

dynamics of the diffusive Lotka–Volterra predator–prey model with

prey-stage structure. They showed the effect of large diffusion rates

on the existence of the positive steady states. A large diffusion rate

for the prey species can lead to the destruction of spatial patterns

while a large diffusion rate for the predator species preserves spatial

patterns. Galiano et al. [10] examined the Lotka–Volterra predator–

prey model with cross-diffusion terms numerically and analytically.

The authors proved the existence of a global weak solution in any

number of space dimensions. Also, the numerical results for the 1-

D domain were shown, underlining the effects of segregation of the

species. Zhang and Zhao [23] considered a delayed diffusive three

species Lotka–Volterra system and analysed the Hopf bifurcations of

the system. These also presented numerical solutions of stable and

oscillatory solutions to illustrate the effects of both delay and diffu-

sion.

Usually, a system of ordinary differential equations (ODEs) can be

analysed by standard techniques. However reaction–diffusion equa-

tions are also important in many physically relevant modelling sce-

narios and are not so easily analysed. Marchant [16] considered semi-

analytical solutions for the Gray & Scott cubic autocatalytic model in

a reaction–diffusion cell. The governing partial differential equation
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(PDE) model was approximated by a lower-order ODE model, us-

ing the Galerkin method of averaging. The ODE model was anal-

ysed using various techniques from combustion theory which al-

lowed bifurcation diagrams and Hopf bifurcation parameter maps to

be found. An excellent comparison between the results of the semi-

analytical method and the numerical solutions of the governing PDEs

was found. The Galerkin averaging method has been applied to vari-

ous other problems including a class of generalized diffusive logistic

delay equations [2], the reversible Selkov model with feedback de-

lay [3] and extensions to the Gray–Scott model such as Michaelis–

Menten decay [17].

Fagan et al. [7] explored the importance of habitat edge effects, or

boundary conditions, on species interactions and illustrated a num-

ber of scenarios using diffusive Lotka–Volterra equations. They gave

physical examples of the different types of boundary conditions and

related them to mathematical definitions. Scenarios considered in-

cluded edge induced changes to migration patterns and mortality,

cross-boundary subsidies and new types of interactions.

In this paper, the Lotka–Volterra predator–prey model with two

delays is examined in both 1-D and 2-D domains where the Galerkin

method is used to develop semi-analytical solutions. In Section 2,

governing equations are presented and the Galerkin method is used

to obtain the delay differential equations (DDEs) which represent the

semi-analytical model. In Section 3, the steady-state concentration

profiles and response diagrams are presented and described in detail.

In Section 4, a local stability analysis of the semi-analytical model

is performed. The Hopf points are found and the parameter region

in which Hopf bifurcations occur is identified. In Section 5, the pe-

riodic solution near the Hopf bifurcation is developed for the semi-

analytical DDE model for the 1-D domain. Comparisons are made

throughout the paper between the semi-analytical results and nu-

merical solutions of the governing PDEs.

2. The semi-analytical model

2.1. The governing equations

The Lotka–Volterra predator–prey model with two delays is con-

sidered in 1-D and 2-D domains. The governing PDEs and boundary

conditions in 2-D are

ut = D1(uxx + uyy) + u(α − γ1u − δ1v(t − τ1)),

vt = D2(vxx + vyy) + v( − β + γ2u(t − τ2) − δ2v), (1)

ux = vx = 0, at x = 0, uy = vy = 0, at y = 0, u = v = 0,

at x = y = 1, u = uφ, at − τ2 < t ≤ 0 and v = vφ at − τ1 < t ≤ 0.

(2)

The system (1) is in non-dimensional form with the scaled con-

centrations of the prey population density, u, and the predator pop-

ulation density, v. The 1-D system is the natural simplification of

(1), where there are no y-variations. The boundary conditions at x =
y = 0 are zero-flux Neumann boundary conditions while at x = y = 1

fixed population, Dirichlet boundary conditions are applied. Hence,

it is an open system which allows the existence of steady-state solu-

tions and sustained periodic oscillations. At x = y = 0 the zero-flux

boundary conditions can either be interpreted as an impermeable

boundary, which the species cannot cross or a simple symmetry con-

dition. Fagan et al. [7] refers to this type of boundary condition as a

“fence effect” and gives an example of the edges between old growth

forests and clear-cuts as a boundary red-backed voles will not cross.

As a fixed zero population boundary condition is applied at x = y = 1

the region beyond can be interpreted as lethal to the species. Fagan

et al. [7] gives examples of the applicability of Dirichlet boundary

condition such as Bison crossing national park boundaries (outside

of which they are shot) and beetles crossing into cleared land (where

they die of desiccation).

The system has ten other parameters; α and β represent the

growth rate of the prey species and the death rate of the preda-

tor species, respectively. The parameters γ 1 and δ2 are the carry-

ing capacity of the prey u and the predator v populations. δ1 is the

decrease in the population of the prey due to the predator pres-

ence, while γ 2 denotes the growth in the population of predator,

due to the existence of the prey. The parameters τ 1 and τ 2 repre-

sent the hunting and predator maturation delays. The parameters D1

and D2 are the diffusion coefficients of the two species u and v. Note

that all parameters are positive for physically realistic population

models.

Numerical solutions of (1) and (2) are found using a Crank–

Nicholson finite-difference scheme with accuracy of O(�t, �x2),

while a fourth-order Runge–Kutta method is used to solve the DDE

models.

2.2. The Galerkin method

The Galerkin method is used to obtain the semi-analytical model

for the Lotka–Volterra predator–prey model (1) in 1-D and 2-D do-

mains. This method assumes a spatial structure of the population

density profiles, allowing the governing PDEs (1) and boundary con-

ditions (2) to be approximated by a set of lower-order ODEs. The ex-

pansion

u(x, t) = u1(t) cos

(
1

2
πx

)
+ u2(t) cos

(
3

2
πx

)
,

v(x, t) = v1(t) cos

(
1

2
πx

)
+ v2(t) cos

(
3

2
πx

)
, (3)

is used which represents a two-term method in the 1-D spatial

domain. Expansion (3) satisfies the boundary conditions (2), but

not the governing PDEs. The form of basis functions (3) also has

the property that the concentrations at the impermeable bound-

ary x = 0 are u = u1 + u2 and v = v1 + v2. The free parameters in

(3) are found by evaluating averaged versions of the governing

equations, weighted by the basis functions. This process gives the

following DDEs

du1

dt
= −π2D1u1

4
− 8γ1u2

1

3π
− 16γ1u1u2

15π
+ αu1 − 8δ1u1v1d

3π

− 8δ1u1v2d

15π
− 8δ1u2v1d

15π
− 72δ1u2v2d

35π
− 72γ1u2

2

35π
,

dv1

dt
= −π2D2v1

4
− 8δ2v2

1

3π
− 16δ2v1v2

15π
− βv1 + 8γ2v1u1d

3π

+ 8γ2v1u2d

15π
+ 8γ2v2u1d

15π
+ 72γ2v2u2d

35π
− 72δ2v2

2

35π
,

du2

dt
= −9π2D1u2

4
− 8γ1u2

1

15π
− 144γ1u1u2

35π
+ αu2 − 8δ1u1v1d

15π

+ 8γ1u2
2

9π
− 72δ1u2v1d

35π
− 72δ1u1v2d

35π
+ 8δ1u2v2d

9π
,

dv2

dt
= −9π2D2v2

4
+ 8δ2v2

2

9π
− 144δ2v1v2

35π
− βv2 + 72γ2v2u1d

35π

− 8δ2v2
1

15π
+ 8γ2v1u1d

15π
+ 72γ2v1u2d

35π
− 8γ2v2u2d

9π
, (4)

where uid = ui(t − τ2) and vid = vi(t − τ1), i = 1, 2. The DDEs (4) are

obtained by truncating the series (3) after two terms. It is found that

a two-term method produces superior accuracy without excessive

expression swell. The one-term solution (when u2 = v2 = 0) is also

calculated for comparison purposes. The accuracy of the one and two-

term series solutions can be estimated using Richardson extrapola-

tion, see Nelson et al. [19] for an example of error estimation for a

reaction–diffusion equation governing self-heating in compost piles.

For the 2-D spatial domain, the expansion
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