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a b s t r a c t

A simple class of stochastic models for epidemic spread in finite, but large, populations is studied. The purpose

is to investigate how assumptions about the times between primary and secondary infections influences the

outcome of the epidemic. Of particular interest is how assumptions of individual variability in infectiousness

relates to variability of the epidemic curve. The main concern is the final size of the epidemic and the time

scale at which it evolves. The theoretical results are illustrated by simulations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Epidemics are complex processes. The possibility for an infection

to spread in a population is related both to medical-biological prop-

erties deciding the interplay between an infectious person and the

infectious agent and to social factors involved in contacts between

infectious and susceptible individuals.

In this paper we will consider assumptions about randomness. It

is a common understanding that chance plays an important part in

spread of infections. Epidemics in large populations are mass phe-

nomena and we can expect that the influence of chance on overall

properties will, due to some form of the theorem of large numbers,

even out. If this is the case it is crucial to understand for which prop-

erties it is sufficient to consider mean properties and how, in that

case, they are related to the stochastic properties of the infectious

agent and the population. It is worth pointing out that it is well-

known that randomness influences the outcomes of an epidemic

even in large populations. An example is that it always is a positive

probability that the spread stops early with only a few infected. An-

other random outcome is the time it takes for an epidemic to grow

large.

The assumptions used to build a model of an epidemic have to

be considered carefully. They should include features that are related

to the phenomena under study. If the aim is, as it normally should

be, restricted to a study of a few aspects it is also recommendable
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that the assumptions are as simple as possible. A consequence is that

the model should only use assumptions that are important for the

predictions of the model.

In this paper we will use a simple model for the spread of an in-

fection to study the impact of some basic assumptions of how an

infectious agent is transmitted. The aim is to describe human-to-

human spread of an infection in a large closed population. The model

used has a long history and is basically a stochastic version of the

Kermack–MacKendrick model ([7]) applied to a finite population. It is

described in Section 2. We will here follow the formulation and ter-

minology of [10]. There are several treatments of models with similar

structure, see e.g. [3].

The assumptions are related to how many persons an infected per-

son may infect and when secondary infections occur. The times that

elapses from a person is infected till he infects other persons play are

important both in applied and theoretical studies of epidemic spread

(see e.g. [4], [12], [6], and [11]). These times enter into the model

studied here through the generation time distribution. In Section 3

different approaches to assumptions about this distribution are con-

sidered and Section 4 contains a discussion how a specific generation

time density can be motivated.

The epidemic is assumed to start with the introduction of one

(newly) infected person into the population. The focus of the study

is how the assumptions are reflected in the appearance of the epi-

demic curve, which describes how many persons in a population that

are infected at time t after the infection entered the population. The

appearance of the epidemic curves are analysed using martingale

theory in Section 5. Simulated epidemic curves are presented and

discussed in Section 6. We will in particular be concerned with the
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proportion of the population that finally will be infected and at which

time scale the epidemic evolves.

In Section 7 we consider non-parametric estimates of basic pa-

rameters in the model based on one observed epidemic curve. Since

the epidemic curve is based on times of infection that are seldom

observed this may seem an unrealistic theoretical exercise. How-

ever, the possibility to estimate the parameters that define the model

shows what can be recovered from an observation and thus also

which assumptions have identifiable impacts on the predictions of

the model.

2. A simple epidemic model

We will assume that the epidemic takes place in a closed, finite

population with n members. At time t = 0, one newly infected person

enters the population and starts the infectious spread.

The spread is assumed to depend on two, possible random, enti-

ties, λ and K. Here λ is a non-negative (random) number that decides

the ”total amount of infectivity” spread by an infected person. λ is

related to how many secondary infections an infected person may

cause. K is a (random) positive measure, with total mass 1, defined

on [0, ∞[ and is related to how secondary infections are distributed

in time. Observe that both λ and K are considered to be random and

that they may be dependent. In Section 3 we give examples of how

randomness in λ and K can occur.

In the following analysis we will tacitly assume that all measures

and functions are regular enough to admit operations that simplify

calculations, e.g. differentiation and exchange of the order of integra-

tion. Let K(t) = K([0, t[). For simplicity we assume that there exist a

density so that

K(t) =
∫ t

0

κ(s)ds. (1)

The functions λκ(t) are referred to as infectiousness functions by

Becker [3].

It is assumed that for a given infectious individual possibly infec-

tious contacts, conditional on λ and K, occur according to a Poisson

process. The number of contacts in the interval I = [a, b[, after infec-

tion is thus Poisson distributed with mean λK(I).

The contacted persons are chosen randomly in the population. An

infectious contact results in a secondary case if the contact is taken

with a susceptible person, i.e. a person that has not been previously

infected.

There are several levels of randomness in the model. First there is

a random variation of the infectiousness in an infected individual de-

scribed by the random pair (λ, K). Then there is randomness in how

this infectiousness results in possible infectious contacts. A conse-

quence of the model is that the total number of possible infectious

contacts taken by a random infected individual follows a mixed Pois-

son distribution i.e. it is Poisson distributed with the random mean λ.

In large populations when there are many infected individuals it

is sometime (but not always) possible to, as least as a first approx-

imation, disregard individual variations. Certain mean values are of

particular interest. We will in the following have use of the basic re-

production number and the basic generation time density.

The basic reproduction number, R0, is often defined as the mean

number of secondary cases to an infected individual in a totally sus-

ceptible population. We will in this paper define it as the mean num-

ber of possible infectious contacts. In the class of models considered

here the two definitions are equivalent. Thus

R0 = E(λ). (2)

The expectation of random function λκ , normalized to have total

mass 1 is called the basic generation time density i.e.

g(t) = E(λκ(t))

R0

. (3)

[12] discusses relations between epidemic models and demogra-

phy where primary and secondary infections correspond to mothers

and female offspring. In demography (which typically is concerned

with large populations) the correspondence of E(λκ(t)) is often de-

scribed as the rate of production of (female) offspring by a mother of

age t.

We can also define the basic generation time distribution

G(t) =
∫ t

0

g(s)ds = E(λK(t))

R0

. (4)

We will also consider the mean generation time

T0 =
∫ ∞

0

tg(t)dt. (5)

Later we will be concerned with the variability of the epidemic

process. For this reason we introduce the variance function

V(t) = Var(λK(t))

R2
0

. (6)

Note that

V0 = V(∞) = Var(λ)

R2
0

(7)

is the square of the coefficient of variance of the random variable λ.

3. Models of the generation time density

The generation time density plays an important part in the model.

Its role is to explain the times between a primary infection and its

secondary infections. We will consider two approaches to motivate

assumptions about this density.

3.1. Models with non-random generation time density

A common assumption is that the infectivity of an infected per-

sons develops in time without individual variation. This implies that

the function κ(t) is constant, i.e.

κ(t) = g(t), (8)

The intensity of the Poisson process that generates possible infectious

contacts of an infectious person at time t after infection is λg(t) where

λ is a random variable.

3.2. Models with latent and infectious times

In SEIR-models it is assumed that an infection is followed by a pe-

riod, called the latent period, during which the infected person do not

transmit the infection. The latent period is then followed by an infec-

tious period. Both the latent and infectious periods may have random

individual duration. In this paper we shall, for simplicity, only con-

sider models where the infectivity is assumed to be constant without

individual variation, throughout the infectious time.

Let X be the duration of the latent period, Y the duration of the in-

fectious period, and α the rate at which the possible infectious con-

tacts are taken during the infectious period. Then

λκ(t) = αI(X < t ≤ X + Y). (9)

Obviously, in this model, the number of secondary infections

caused by an infected depends on the length, Y, of the infectious pe-

riod. The total individual infectivity will be λ = αY .

If we normalize κ to be a density of a measure with total mass 1

we get

κ(t) = I(X < t ≤ X + Y)/Y. (10)

The basic generation number equals

R0 = αE(Y), (11)
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