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a b s t r a c t

One of the key results of the food web theory states that the interior equilibrium of a tri-trophic food chain

described by the Lotka–Volterra type dynamics is globally asymptotically stable whenever it exists. This arti-

cle extends this result to food webs consisting of several food chains sharing a common resource. A Lyapunov

function for such food webs is constructed and asymptotic stability of the interior equilibrium is proved. Nu-

merical simulations show that as the number of food chains increases, the real part of the leading eigenvalue,

while still negative, approaches zero. Thus the resilience of such food webs decreases with the number of

food chains in the web.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Competition is one of the main driving forces reducing biodiver-

sity in complex food webs. The “competitive exclusion principle” for-

mulated by Gause [1] excludes coexistence of two species that com-

pete for a single resource. Levin [2] proved that n competing species

cannot coexist at a population equilibrium if they are limited by less

than n limiting factors. As species are often limited by a few nutri-

ents (e.g., phosphorus and/or nitrogen in lakes) how is it then possi-

ble that many species do survive [3]? Several mechanisms explaining

species coexistence were proposed. These include, but are not limited

to non-equilibrium dynamics due to environmental [3] or internal [4]

fluctuations in population dynamics, relative nonlinearity in species

responses to competition [5,6], predation on competing species [7,8],

or adaptive foraging [9,10]. These mechanisms fit into two broad cat-

egories [5]: (i) stabilizing mechanisms that tend to increase neg-

ative intraspecific interactions relative to interspecific interactions

(density dependent mechanisms, e.g., the logistic population growth)

and (ii) equalizing mechanisms that tend to decrease average fitness

differences between species. These latter mechanisms are often ex-

pressed through changes in evolutionary/behavioral traits.
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The interplay of these two mechanisms on stability and persis-

tence in di- and tri-trophic food webs were studied in [11]. That

study was motivated by “the paradox of phytoplankton” where in

lakes a large number of phytoplankton species survives on just one

or two common resources (e.g., phosphorus) [3]. One of the food web

modules considered assumed that each of the phytoplankton species

was regulated by a specialized predator (e.g., a zooplankton species)

(Fig. 1). Thus the n consumer species were competing for a single re-

source, but as each of them was consumed by a specialized preda-

tor, there were n + 1 limiting factors so that the exclusion princi-

ple did not apply. Indeed, numerical simulations confirmed that all

species could coexist. Such a food web is a generalization of a single

tri-trophic food chain studied intensively in ecology [12,13]. Using a

Lyapunov function, Harrison [14] proved that the interior equilibrium

of the tri-trophic food chain is globally asymptotically stable when-

ever it exists. However, numerical simulations show that as the num-

ber of food chains sharing a common resource increases the stabiliz-

ing effect of the negative resource density dependence (modeled by

the logistic resource growth) dilutes and numerical simulations are

inconclusive with respect to the asymptotic stability of the interior

equilibrium (more details are given in Section 3).

In this article we extend the result on the asymptotic equilibrium

stability for a single tri-trophic food chain to many food chains shar-

ing a common resource. Using a Lotka–Volterra type Lyapunov func-

tion we show that the resource density converges to an equilibrium

and on the attractor each food chain dynamics are described by a

Lotka–Volterra predator-prey model. However, these Lotka–Volterra
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Fig. 1. Food web with n tri-trophic chains sharing a common resource.

predator-prey models are not independent as their trajectories sat-

isfy a constraint. Using this information we prove in Section 2.1 that

for two food chains sharing a common resource the population equi-

librium is globally asymptotically stable. We extend this result in

Section 2.2 where we prove that the population equilibrium is locally

asymptotically stable for any number of food chains.

2. Model

We consider a tri-trophic food-web consisting of a common re-

source (x), n consumers (y1, . . . , yn) and top specialist predators

(z1, . . . , zn) illustrated in Fig. 1. Such a food web topology can de-

scribe e.g., a single plant species with several aphid species each of

them parasitized by a specialized parasitoid [15]. The Lotka–Volterra

conceptualization of population dynamics in such a food web is

dx

dt
= rx

(
1 − x

K

)
−

n∑
i=1

λiyix

dyi

dt
= yi(eiλix − mi − �izi) i = 1, . . . , n

dzi

dt
= zi(Ei�iyi − Mi) i = 1, . . . , n,

(1)

where r is the resource specific growth rate, K is the resource envi-

ronmental capacity, λi (�i) is the consumer (predator) search rate

for resource (consumer) i, ei (Ei) is the efficiency rate with which the

resources (consumers) are converted to new consumers (predators),

and mi (Mi) is the consumer (predator) mortality rate [11]. In what

follows we assume that all these parameters are positive and we con-

sider only solutions of (1) that are non-negative (i.e., all initial condi-

tions are positive). The interior equilibrium of (1) is

x∗ = K

(
1 − 1

r

n∑
i=1

λiMi

Ei�i

)

y∗
i

= Mi

Ei�i

i = 1, . . . , n

z∗
i

= eiλix
∗ − mi

�i

i = 1, . . . , n.

(2)

This equilibrium is positive provided the intrinsic per capita resource

population growth rate is high enough so that

r >

n∑
i=1

λiMi

Ei�i

(3)

and the resource environmental carrying capacity satisfies

K

(
1 − 1

r

n∑
i=1

λiMi

Ei�i

)
>

mi

eiλi

, i = 1, . . . , n. (4)

In what follows we will assume the above two inequalities hold and

we study stability of equilibrium (2).

First we observe that the resource density x(t) converges to the

equilibrium x∗.

Proposition 1. Positive solutions of (1) are bounded and component

x(t) of every solution converges to the equilibrium x∗.

Proof. Let

V = x − x∗ − x∗ ln
x

x∗ +
n∑

i=1

1

ei

(
yi − y∗

i − y∗
i ln

yi

y∗
i

)

+
n∑

i=1

1

eiEi

(
zi − z∗

i − z∗
i ln

zi

z∗
i

)
.

Then V(x∗, y∗
1
, . . . , y∗

n, z∗
1
, . . . , z∗

n) = 0, V is non-negative and

dV

dt
= − r

K
(x − x∗)2 (5)

along trajectories of model (1). Thus V is a Lyapunov function and all

trajectories of model (1) are bounded.

Let us consider a non-trivial solution of (1) and let us assume that

x(t) does not converge to x∗. There exists a sequence of times ts → ∞
and δ1 > 0 so that |x(ts) − x∗| > δ1. Because the trajectory is bounded,

its derivative is bounded as well and there exists δ2 > 0 such that

|x(t) − x∗| > δ1/2 for t ∈ (ts − δ2, ts + δ2) and all ts. Thus, (5) implies

that V cannot be non-negative for all t’s, a contradiction with non-

negativity of V. �

Second, let us consider an ω-limit solution (xω(t), yω(t), zω(t)) of

(1). It follows from Proposition 1 that xω(t) = x∗ for every t ∈ R and

therefore from (1)

n∑
i=1

λiy
ω
i (t) = r

(
1 − x∗

K

)
. (6)

Moreover, the ω-limit solution satisfies the following Lotka–Volterra

system of paired equations

dyω
i

dt
= yω

i (eiλix
∗ − mi − �iz

ω
i ) i = 1, . . . , n

dzω
i

dt
= zω

i (Ei�iy
ω
i − Mi) i = 1, . . . , n.

(7)

These equations are pairs of the Lotka–Volterra predator-prey

equations so that on the attractor we have the following Lyapunov

functions

Vi = 1

ei

(
yω

i − y∗
i − y∗

i ln
yω

i

y∗
i

)

+ 1

eiEi

(
zω

i − z∗
i − z∗

i ln
zω

i

z∗
i

)
, i = 1, . . . , n. (8)

We want to prove that the only ω-limit solution of system (7) that

satisfies (6) is the constant solution coinciding with equilibrium (2).

The case of a single food chain (n = 1) was studied in [14] so we

begin with the case n = 2.

2.1. The case of two competing food chains.

We start with a system consisting of two food chains with a com-

mon limiting resource (x)
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