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a b s t r a c t

A new functional law of large numbers to approximate a time inhomogeneous Markov process that is only

density dependent in the limit as an index parameter goes to infinity is developed. This extends previous

results by other authors to a broader class of Markov processes while relaxing some of the conditions re-

quired for those results to hold. This result is applied to a stochastic metapopulation model that accounts for

spatial structure as well as within patch dynamics with the novel addition of time dependent dynamics. The

resulting nonautonomous differential equation is analysed to provide conditions for extinction and persis-

tence for a number of examples. This condition shows that the migration of a species will positively impact

the reproduction in less populated areas while negatively impacting densely populated areas.

Crown Copyright © 2015 Published by Elsevier Inc. All rights reserved.

1. Introduction

A metapopulation is a population that is separated into geograph-

ically distinct patches which allow migration between patches. Many

metapopulation models assume that the underlying environment the

population inhabits is static [5,10,19,22]. Such an assumption is of-

ten made for one or both of the following reasons: firstly, the vari-

ation of the environment is often sufficiently small that it can be

neglected; and, secondly, models with static environments are signif-

icantly more tractable. However, if the variation of the environment

is not sufficiently small, any predictions based on a model that fails to

account for this variation could be highly inaccurate. In this situation,

tractability needs to be improved.

To accomplish this, deterministic approximations are often used

[6,11,18,25]. Besides simplifying the analysis, deterministic models

are a useful way to approximate the mean of quasi-stationary dis-

tributions; the stationary distribution of the stochastic process condi-

tioned on not being absorbed [4]. One of the models that uses a deter-

ministic approximation is given by Smith et al. [25], where a spatially

structured metapopulation model that accounts for within patch dy-

namics via a birth–death–migration process is introduced. The re-

sults of Pollett [23] for asymptotically density dependent Markov

processes were then applied, which resulted in a limiting system of

∗ Tel.: +61883133245.

E-mail address: andrew.smith01@adelaide.edu.au

differential equations that approximated the mean trajectory of the

stochastic process.

While Smith et al. allowed the dynamics on each patch to be het-

erogenous, dynamics such as births and migrations can often not only

vary spatially but temporally also, in the form of breeding and mi-

gration seasons, for example. Furthermore, this variation is not lim-

ited to merely the births and migrations, but nearly all dynamics in-

cluded in the model can often varying temporally also. To account for

such behaviour, a time inhomogeneous Markov process will be used

to model the number of individuals on each patch. However, the re-

sults of Pollett [23] do not hold for such models, and even the more

recent work of Pagendam and Pollett [20] fails to account for inho-

mogeneous models of the form given in [25].

To begin, an extension to the model by Smith et al. [25] is

introduced, which accounts for temporally varying parameters. In

Section 3, a new functional law of large numbers is proposed, one that

can be applied to inhomogeneous asymptotically density dependent

Markov chains (Theorem 3.2), a class which includes the model pre-

sented in Section 2. The approximating differential equation resulting

from the functional law of large numbers is examined in Section 4 and

conditions for extinction and persistence are presented.

2. Model

Let J be the number of patches that can be occupied in the

metapopulation, and n
(N)
i

(t) be the number of individuals occu-
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Fig. 1. Illustration of the dynamics for patch i and migration to and from patch j, where

the edges of the graph illustrate possible individual movements.

pying patch i at time t, and define n(N)(t) := {n
(N)
1

(t), . . . , n
(N)
J

(t)},
indexed by N which is the total population ceiling. The birth–death–

migration process (n(N)(t), t ≥ 0) takes values in the state space SN :=
{0, . . . , N1} × · · · × {0, . . . , NJ}, where Ni is the population ceiling for

patch i, noting the relation N = ∑
i Ni. Furthermore, the environment

which the metapopulation inhabits is allowed to vary by adopting

transition rates that have explicit time dependence. Then the process

(n(N)(t), t ≥ 0) has nonzero transition rates

q(n, n + ei; t) = νi(t)(Ni − ni) + nibi

(
t,

ni

Ni

)
, (1a)

q(n, n − ei; t) = φi(t, ni)λi0(t) + di(t)ni, (1b)

q(n, n − ei + e j; t) = φi(t, ni)λi j(t)
Nj − nj

Nj

for all j �= i, (1c)

where ei is the unit vector with a 1 in the ith position. These rates cor-

respond to: an increase on patch i due to a birth or external immigra-

tion (1a), a decrease on patch i due to a death or removal from the sys-

tem (1b) and a migration from patch i to patch j (1c), all at time t. The

birth rate function bi(t, ·) determines the per-capita birth rate at time

t given how densely populated patch i is. The functions ν i(t), di(t) and

λij(t) are the external immigration rate, per-capita death rate function

and proportion of individuals migrating from patch i to patch j (or out

of the system if j = 0) at time t for patch i, respectively. The migration

function φi(t, ·) represents the rate at which individuals leave patch i

at time t. Fig. 1 illustrates the transitions (1).

3. Functional limit law

First, it is to be noted that the transition rates (1) can be written in

the form

q(n, n + l; t) = N f (N)
(

t,
n

N
, l

)
,

where l ∈ Z
J represents possible jumps and

f (N)(t, x, l) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

νi(t)(M(N)
i

− xi) + xibi

(
t, xi

M(N)
i

)
if l = ei,

φ̂(N)
i

(t, xi)λi0(t) + di(t)xi if l = −ei,

φ̂(N)
i

(t, xi)λi j(t)

(
1 − x j

M(N)
j

)
if l = −ei + e j,

0 otherwise,

M
(N)
i

:= Ni/N, and the functions φ̂(N)
i

: [0, ∞) × [0, M
(N)
i

] → R+
satisfy

φ̂(N)
i

(
t,

n

N

)
= φi(t, n)

N
.

In the definition of density dependence by Kurtz [16], there is an

equivalent function, f(x, l), to the function f(N)(t, x, l) given above. How-

ever, one will note that f does not have any dependence on t or N and,

as such, the process n(N)(t) is not density dependent. Furthermore,

f(N)(x, l) (which is equivalent to f(N)(t, x, l)) in Definition 3.1 of [23] has

no dependence on t, while f(t, x, l) in Definition 1 of [20] has no de-

pendence on N. So again, the process n(N)(t) is not density dependent

according to either of these definitions. Therefore, it is necessary to

extend these definitions to include a new type of process: an asymp-

totically density dependent process in time.

Definition 3.1. A family of Markov processes {n(N)(t)} indexed by N

> 0 (with a state space SN ⊂ Z
J) is said to be “asymptotically den-

sity dependent in time” if there exists a continuous function, f (N) :

[0, ∞) × E × Z
J 	→ R, where E ⊆ R

J, such that the transition rates of

n(N)(t) are given by

q
(
n(N), n(N) + l; t

)
= N f (N)

(
t,

n(N)

N
, l

)
, l �= 0,

and F(N)(t, x) := �llf
(N)(t, x, l) converges uniformly over [0, ∞) × E to

F(t, x) as N → ∞.

The process with rates (1) satisfies Definition 3.1 under some ad-

ditional mild assumptions. Assume that M
(N)
i

→ Mi and there exists

functions φ̂i : Si 	→ R+, where Si := [0, ∞) × [0, Mi], satisfying

lim
N→∞

sup
(t,x)∈Si

∣∣∣φ̂(N)
i (t, x) − φ̂i(t, x)

∣∣∣ = 0, for all i, (2)

and also functions bi : [0,∞) × [0, 1] 	→ R+ satisfying

lim
N→∞

sup
(t,x)∈Si

∣∣∣∣∣bi

(
t,

xi

M(N)
i

)
− bi

(
t,

xi

Mi

)∣∣∣∣∣ = 0, for all i. (3)

Then, if the total population ceiling, N, is taken as the index pa-

rameter and E = [0, M1] × · · · × [0, MJ], the process with rates (1) is

asymptotically density dependent in time according to Definition 3.1.

Just as the definition of density dependence was extended to include

asymptotic density dependence in time, Theorem 1 of [20] needs to

be extended to also include asymptotically density dependent pro-

cesses. This extension, presented in Theorem 3.2 below, relaxes the

condition of E being an open set which is imposed in all previous re-

sults. While conditions (B) and (C) below are also different conditions

than required previously, the difference is not significant. Informally,

as N gets large, the density process, n(N)(t)/N, converges to the solu-

tion of a differential equation.

Theorem 3.2. Let (n(N)(t), t ≥ 0), indexed by N, be asymptotically den-

sity dependent in time. Furthermore, assume that

(A) F is Lipschitz,

(B) sup
x∈E

∑
l

f (N)(t, x, l) < ∞, for all t > 0, N ≥ 1 and

(C) sup
x∈E

∑
l

|l|2
f (N)(t, x, l) < ∞ for all t > 0, N ≥ 1,

where the product | · |2 is the Euclidean norm of the element-wise prod-

uct. Then if n(N)(0)/N → x0 in probability as N → ∞ then, for any ε > 0

and for all fixed t > 0,

lim
N→∞

P

(
sup
s≤t

∣∣∣∣n(N)(s)

N
− x(s, x0)

∣∣∣∣ > ε

)
= 0, (4)

where x(t, x0) is the solution to

dx

dt
= F(t, x), x(0) = x0.

Proof. Define X(N)(t) := n(N)(t)/N. Under the conditions of Theorem

7.3 of [9], X(N)(t) may be expressed as

X(N)(t) = X(N)(0) + M(N)(t) +
∫ t

0

F (N)(s, X(N)(s))ds, (5)

where M(N)(t) is a martingale with respect to the filtration F (N)
t =

σ {X(N)(s), 0 ≤ s ≤ t}. To verify the conditions of Theorem 7.3 of [9],

set

μ(t, x, y) = N f (N)(t, x, y − x)

λ(t, x)
and λ(t, x) = N

∑
l

f (N)(t, x, l)
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