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a b s t r a c t

A simulation method is presented for the demographic and genetic variation of age structured haploid pop-

ulations. First, we use matrix analytic methods to derive an equilibrium distribution for the age class sizes

conditioned on the total population size. Knowledge of this distribution eliminates the need of a burn-in time

in simulations. Next, we derive the distribution of the alleles at a polymorphic locus in various age classes

given the allele frequencies in the total population and the age size composition. For the time dynamics, we

start by simulating the dynamics for the total population. In order to generate the inheritance of the alle-

les, we derive their distribution conditionally on the simulated population sizes. This method enables a fast

simulation procedure of multiple loci in linkage equilibrium.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Simulation studies are important as a tool for checking the va-

lidity of various assumptions and approximations in population ge-

netic models. Fast and accurate simulation techniques are therefore

of interest in order to obtain reliable results. Age structured popu-

lation models with deterministic growth have been of interest for

a long time [4,13,14] and a good overview can be found e.g. in [12]

with extended models that account both for demographic and en-

vironmental noise. In this paper, we present simulation techniques

for an age structured population in a constant environment in which

the age class sizes, as well as the total population size, fluctuate

stochastically.

We present a discrete time model, where the age composition

at each time step is described by means of matrix recursions. Us-

ing this model, we derive an approximate distribution for the age

composition, given the total population size. By knowing this dis-

tribution, the need for a burn-in time is eliminated in simulations

since a random draw from this distribution can be used as a starting

point.

In population genetics, the genetic information at various loci is

important for calculating and estimating e.g. inbreeding and effective

population sizes, as reviewed by [2] and [15]. We present a method

for simulation of alleles at independent loci given the trajectory of

age class sizes. This method can be applied to models in which the
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age class sizes are either constant, or vary stochastically according to

some demographic model.

The paper is organized as follows. In Section 2 we define the

demographic population model. In the following section we derive

an approximate conditional distribution for the age composition,

given the total population size. The accuracy of these approxima-

tions is tested by means of simulations in Section 4. In Section 5,

we present a method for simulation of allele frequencies at loci in

linkage equilibrium. A discussion is found in Section 6, derivations in

the appendices and a list of the most important notation is given in

Table 1.

2. Demographic model

Consider a population divided into J age classes and let

Nt = (Nt0, . . . , NtJ−1)
′,

with ′ referring to vector transposition, be the number of individu-

als in each age class at time t. Let Ytjh be the number of offspring

of an individual h in age class j at time t. For fixed t and j, all Ytjh

are independent and identically distributed random variables with

mean bj and variance σ 2
j

. The survival Itjh of an individual h from

time t to t + 1 is Bernoulli distributed with probability sj and in-

dependent of other individuals’ survival. We also allow for a cor-

relation ρ j between the number of progeny Ytjh and survival Itjh

of h. Let Nt+1,0 j denote the total number of newborns at time t

of individuals in age class j. Then, the dynamics of the population
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Table 1

List of notation used in the paper.

Notation Definition

bj Mean number of offspring for an individual in age class j

lj Probability that an individual survives to age class j

sj Probability that an individual in age class j survives to age class j + 1

ρ j Correlation between the number of progeny and survival for an individual in age class j

Itjh Survival indicator of individual h in age class j from time t to t + 1

Ytjh Number of offspring of individual h in age class j at time t

Nt Vector containing number of individuals in all age classes at time t

Ntj Number of individuals in age class j at time t

Ntj0 Number of newborns at time t of individuals in age class j

Gt Projection matrix of vital rates for Nt

g Expected projection matrix

εt Matrix of serially uncorrelated demographic noise for the N-process

λ Multiplicative growth rate and largest eigenvalue of g

u Vector with components proportional to the center point of the equilibrium age distribution of N

v Vector with components proportional to the reproductive values

Ñt Population size when age classes are weighted by v

Ztaj Number of individuals with allele a in age class j at time t

Zta Vector containing number of individuals with allele a in all age classes

Z̃ta Number of individuals with allele a when age classes are weighted by v

pta Age averaged allele frequency, with respect to v, of allele a at time t

is given by

Nt+1, j+1 =
Nt j∑

h=1

It jh, j = 0, . . . , J − 2,

Nt+1,0 j =
Nt j∑

h=1

Yt jh, j = 0, . . . , J − 1, (1)

Nt+1,0 =
J−1∑
j=0

Nt+1,0 j.

This implies that the length of each age class is the same and it

equals one unit of time. Following [17], the time dynamics of the pop-

ulation size can also be described using matrix population models (cf.

[1]). Let

Nt+1 = Gt Nt = gNt + εt+1 (2)

where Gt is a J × J projection matrix of vital rates, g is the expected

projection or Leslie matrix [13] and εt+1 is a column vector with

E(εt+1|Nt) = 0 that represents serially uncorrelated demographic

noise. Let λ0, . . . , λJ−1 be the complex-valued eigenvalues of g in de-

scending order with respect to their moduli, and let g = Q�Q−1 be its

Jordan canonical form. The columns (rows) of the matrix Q (Q−1) are

the right (left) eigenvectors of g, and � is an upper triangular matrix

with λ0, . . . , λJ−1 along the diagonal (see for instance [7]).

The largest eigenvalue λ = λ0 of g, which is real-valued, positive

and unique according to Perron–Frobenius theorem, represents the

multiplicative growth rate of the population. The right eigenvector u

corresponding to λ consists of the stable age distribution and the el-

ements of the left eigenvector v are proportional to the age specific

reproductive values [6]. It is assumed that the elements of u and v are

normalized so that
∑J−1

j=0
u j = ∑J−1

j=0
u jv j = 1. The age specific repro-

ductive values are of importance for age structured populations. For

instance, if they are used as weights when calculating the variance

effective population size it is possible to determine the long term ge-

netic drift [5,11,17,20].

3. Distribution of the age composition

Suppose that the reproductively weighted population size at time

t is Ñt = vNt . Here, we will derive an approximate age distribution for

both the total population as well as for different alleles at a specific

chromosomal locus. We show in Appendix A that recursion (2) can be

rewritten as

Nt+1 − Ñt+1u = g(Nt − Ñt u) + �2εt+1, (3)

where �2 = QI2Q−1 and I2 = diag(0, 1, . . . , 1) are J × J matrices. It-

erating (3) with respect to t we can express the deviation from the

stable age distribution Ñt u at time t as

Nt − Ñt u =
∞∑

τ=0

gτ�2εt−τ . (4)

Following calculations in [3] and [17], the noise covariance matrix is

Cov(εt |Nt−1) ≈ Ñt−1�, (5)

where � = (�i j) has non-zero elements given by

�00 =
J−1∑
j=0

ujσ
2
j ,

� j+1, j+1 = ujs j(1 − s j), j = 0 . . . , J − 2, (6)

�0, j+1 = � j+1,0 = ujσ j

√
s j(1 − s j)ρ j, j = 0 . . . , J − 2.

In formula (5), the number of individuals in each class j at time t − 1

is approximated by Ñt−1u j, so that for instance the variance of the

total reproductive success of all age j individuals is roughly Ñt−1u jσ
2
j

.

Since {εt} are martingale differences, it follows from (4), (5) and the

central limit theorem for martingales [8,10] that

Nt − Ñt u|{Ñt−τ−1}∞
τ=0 ≈ N(0,

∞∑
τ=0

Ñt−τ−1gτ�2��′
2(gτ )′)

≈ N(0, Ñt−1V ), (7)

is a good approximation if the sum does not converge too rapidly,

so that many terms contribute. In the last step we assumed that

Ñt−τ−1/Ñt−1 ≈ λ−τ , so that the covariance matrix is proportional to

V =
∞∑

τ=0

λ−τ gτ�2��′
2(gτ )′, (8)

and in order for the sum in (8) to converge, it is necessary that |λ1|2 <

λ = λ0, see [17]. Hence,

Nt |Ñt , Ñt−1 ≈ N(Ñt u, Ñt−1V ), (9)

is the conditional distribution of the age composition given the

weighted population size.
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