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a b s t r a c t

In this study, a stochastic discrete-time model is developed to study the spread of an infectious disease in

an n-patch environment. The model includes an arbitrary distribution of the (random) infectious period T ,

and the results are used to investigate how the distribution of T may influence the model outcomes. General

results are applied to specific distributions including Geometric, Negative Binomial, Poisson and Uniform.

The model outcomes are contrasted both numerically and analytically by comparing the corresponding basic

reproduction numbers R0 and probability of a minor epidemic (or probability of disease extinction) P0. It

is shown analytically that for n = 2 the reproduction numbers corresponding to different distributions of T

can be ordered based on the probability generating function φT of T. In addition, numerical simulations are

carried out to examine the final epidemic size F and duration of the epidemic D of a two-patch model.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Deterministic and stochastic epidemic models have commonly as-

sumed that the disease stages, particularly the infectious period (IP),

follow an exponential distribution (continuous-time) or a Geometric

distribution (discrete-time). The very property of these distributions

that makes these models tractable, the memoryless property, is bio-

logically unrealistic for most infectious diseases. It has been shown

that models with these simplifying assumptions may generate mis-

leading assessments on disease control strategies [1,2].

One of the more realistic alternatives to the exponential (Geomet-

ric) distribution for the IP that has been considered is the Gamma

(Negative Binomial) distribution, which is a natural generalization

due to its relationship with the exponential (Geometric) distribution.

When a Gamma distribution is considered, the so called “linear chain

trick” can be used to reduce the system of integro-differential equa-

tions to a system of ordinary differential equations (see, for example,

[1,3–5]). The key idea in this approach is to introduce multiple sub-

stages for the IP, each of which follows an exponential distribution. A

similar idea is applied in stochastic models to allow the use of Gamma

distribution for the IP, while still preserving the Markov property of

the process. Such models were first developed and studied in [6,7]

and more recently in [8,9].
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Stochastic models with an arbitrary distribution for the IP were

first considered in [10–12], but Sellke’s construction [13] helped de-

rive stronger results such as those in [14,15]. Some recent studies have

focused on understanding the effect of disease stage distributions on

the model outcomes (see, for instance, [16–19]).

In [20], a patch model is used to study the spread of an epidemic

through a population divided into n sub-populations (patches), in

which individuals move between the patches according to the law

of a continuous Markov chain (dynamic population epidemic model).

In this framework, infected individuals make contacts with members

currently in the same patch. In a more recent study on a continuous-

time patch model [21], an expression for the basic reproduction num-

ber R0 and the extinction probability of the epidemic are derived in

terms of the IP distribution. It was shown that for a two patch model

R0 is maximized by an IP with constant length. For three or more

patches, however, it is very difficult to draw general conclusions about

the effects of IP distribution on R0 or the extinction probability. In the

current study, we extend some of the results in [21] to an analogous

discrete-time model.

Most epidemic models are in the continuous-time setting, studies

on discrete models have been very limited. Mathematical formula-

tions of continuous-time models are in general complicated when an

arbitrarily distributed IP is included, particularly when the models

also include control measures such as quarantine and isolation (e.g.,

[1]). This may make it challenging for modelers to communicate with

biologists and public health policymakers. Analogous discrete-time

models can be formulated in a way that is much easier to understand

for non-mathematicians (see, for example, [2,22,23]). Another major
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advantage of discrete-time models is their capability of incorporating

distributions directly from empirical data, whereas for continuous-

time models one usually needs to estimate the parameters for a stan-

dard distribution via data fitting.

In Section 2, the general model with n patches and Markov dis-

placement (with transition matrix D) is described. For an infected

individual, the infectious period (T) is assumed to be a discrete

random variable with an arbitrary distribution. We derive a formula

for the basic reproduction number R0, which is given by the spec-

tral radius of the mean offspring matrix, a matrix that depends on

D and the probability generating function (pgf) of T. An equation for

the probability of minor epidemic (extinction probability) P0 is also

derived for this n-patch model.

In Section 3, these general results are then applied to the case

n = 2 patches. For the two-patch model, in addition to an exact for-

mula, lower and upper bounds for R0 are also identified. To examine

the effect that the distribution of T has on R0, we consider three spe-

cific distributions: shifted Geometric, shifted Negative Binomial, and

shifted Poisson. The reproduction numbers corresponding to these

distributions have a specific order relation. Numerical simulations for

the two-patch model are carried out to explore the influence of the T

distribution on the final epidemic size (F), duration of epidemic (D),

as well as the probability of disease extinction (P0).

2. General model

We adopt the approaches used in [20,21] for continuous models

to develop a discrete stochastic SIR metapopulation model, in a closed

population, for an epidemic outbreak with an arbitrarily distribution

for the infectious period (IP). The main objective of this study is to

investigate how the distribution of IP may affect the model outcomes,

particularly the basic reproduction number R0 and the probability of

major epidemic (1 − P0).

Consider a metapopulation with n sub-populations (patches). Let

Ni(t)denote the size of population i at time t for i = 1, 2, . . . , n. Assume

that the total population size N =∑n
i=1 Ni(t) remains constant for all

time. Individuals can move between any two patches, this movement

is determined by a discrete time Markov chain U, which is described

by the transition matrix D = (σij). The entry σij represents the proba-

bility of moving from population i to population j at each time step.

Effective contacts by individual in population i, per unit of time,

is modeled by a Poisson random variable with parameter βi. In the

early stages of the epidemic most effective contacts will produce an

infection because most individuals are susceptible. The disease trans-

mission dynamics within each sub-population is governed by an SIR

model. It is assumed that individuals become immune after recovery.

Let T denote the random variable for the IP (the time until recovery),

which is assumed to be the same for all sub-populations. Here, we

place no restriction on the T distribution, other than T is discrete,

non negative and has a finite mean. All variables and parameters are

listed in Table 2. Fig. 1 provides a graphical representation of the

model described above.

New infections are produced between time steps in the interval

(t, t + 1), while recovery and geographical displacement (governed

by the discrete random variables T and U) occur at integer time points.

This simplification assumption accompanies discrete models and not

their continuous counterpart. However, the assumption is biologically

reasonable for different situations, including (i) commuters traveling

at peak hours from city to city or (ii) domestic animals who are trans-

ported from farm to farm at night.

Assume that, at time t = 0, Ni(0) ≈ Nπi (i = 1, 2, . . . , n), where

π = (πi)
n
i=1

is the stationary probability (i.e. πD = π ). Thus, although

random, the subpopulation Ni(t) will remain close to its initial value

throughout time. Some of the properties of the model are described

in the following sections.

2.1. Computation of R0

In this section, we follow the approach of [21]. The early stages

of an epidemic is approximated by a properly defined multi-type

branching process. The “convergence” of the epidemic model to its

associated branching process has been established previously (see

[12,24,25]). A less formal but more practical exposition can be found

in [9,23,26,27]. To compute the basic reproduction number R0, we

introduce the notation:

ζij = random time spent in patch j (before recovery) by an infectious

individual from patch i;

mij = average number of “offspring” (i.e., secondary infections) that

an individual, from patch i, can produce in patch j during the

entire “life span” (i.e. the random infectious period modeled by

T);

M = (mij), the mean offspring matrix.

R0 is given by the spectral radius of the matrix M, which entries

mij can be written as

mij = βjE(ζij). (1)

By conditional expectation E(ζij) =∑∞
t=0 E(ζij|T = t)P(T = t) and

E(ζij|T = t) = E

(
t−1∑
k=0

IUi(k)=j

)
=

t−1∑
k=0

P(Ui(k) = j) =
t−1∑
k=0

σ (k)
ij

,

where σ (k)
ij

denotes the ijth entry of the matrix Dk, Ui(k)the state of the

Markov chain at time k given that Ui(0) = i, and IUi(k)=j the indicator

function of the event Ui(k) = j. Notice that new infections at time t

are generated by infective individuals at time t − 1, which is why the

sum above has been taken from 0 to t − 1. Combining the last two

equations we obtain the matrix of expectations of ζij⎡
⎢⎢⎣

E(ζ11) · · · E(ζ1n)
...

. . .
...

E(ζn1) · · · E(ζnn)

⎤
⎥⎥⎦ =

∞∑
t=1

P(T = t)
t−1∑
k=0

Dk = E

(
T−1∑
k=0

Dk

)
. (2)

Let λ1, . . . , λn be the eigenvalues of the stochastic matrix D = (σij).
Since D is a Markov matrix, λi = 1 for some i and |λi| ≤ 1 ∀i. If D is
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Fig. 1. (a) Individuals move from patch to patch at time t ∈ N according to the Markov chain U. (b) Once the infection process has started in one patch, the disease can spread to

other patches. Contacts by an infected individual, per unit of time in patch i, is described by Poisson(βi).
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