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a b s t r a c t

Across the landscape of all possible chemical reaction networks there is a surprising degree of stable behavior,

despite what might be substantial complexity and nonlinearity in the governing differential equations. At

the same time there are reaction networks, in particular those that arise in biology, for which richer behavior

is exhibited. Thus, it is of interest to understand network-structural features whose presence enforces dull,

stable behavior and whose absence permits the dynamical richness that might be necessary for life. We

present conditions on a network’s Species-Reaction Graph that ensure a high degree of stable behavior, so long

as the kinetic rate functions satisfy certain weak and natural constraints. These graph-theoretical conditions

are considerably more incisive than those reported earlier.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In two recent articles [1,2] we described a subtle structural at-

tribute, concordance (Definition 6.5), that enforces a degree of stable

behavior for all chemical reaction networks having that attribute, so

long as the kinetic rate functions satisfy certain mild constraints (e.g.,

weak monotonicity [1]). In some respects, the concordance condi-

tion captures completely a network’s capacity for particular kinds of

behavior.

For example, it is precisely the concordant reaction networks for

which the species-formation-rate function is injective for all choices

of weakly monotonic kinetics.3 (Among other things, injectivity pre-

cludes the possibility of two distinct stoichiometrically compatible
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positive equilibria.4) Moreover, among the fully open reaction net-

works that have the capacity to admit a positive equilibrium, it is

precisely the concordant ones for which no differentiably monotonic

kinetics can give rise to an instability resulting from a positive real

eigenvalue. In addition, for every discordant weakly reversible [3]

network there invariably exists a differentiably monotonic kinetics—

in fact a polynomial kinetics—that engenders an unstable positive

equilibrium having a positive real eigenvalue. It was in [1] that we

discussed the stability-enforcing properties of concordant networks

and also the consequences of discordance.

In [2] we connected concordance of a network with properties

of the network’s Species-Reaction Graph (SR Graph), which resembles

the diagram often used for the depiction of biochemical pathways.

In particular, we showed that, when a nondegenerate5 network’s SR

Graph satisfies fairly weak conditions, concordance of the network

is ensured. Consequently, one can deduce directly from properties of

a network’s SR Graph the regular, stable behavior that derives from

concordance, even in the absence of finely detailed information about

the kinetics. Although the concordance of a reaction network can be

decided computationally by means of easy-to-use freely available

software [4,5], the SR Graph theorems in [2] have the added virtue of

4 In fact, in the class of networks with positively dependent reaction vectors, it is

precisely the discordant ones for which there exists a weakly monotonic kinetics that

admits two distinct stoichiometrically compatible positive equilibria. See Appendix B.
5 See Section 2 and Appendix C.
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providing insight into the extremely subtle network-structural fea-

tures that make for concordance or discordance.

The SR Graph theorems in [2] are quite robust in the networks

for which they affirm concordance. There are, however, many exam-

ples of networks for which computations, via [5], establish concor-

dance but for which the graphical theorems in [2] are silent. (All of

the examples in Section 4 are of this kind.) These examples point to

the existence of graph-theoretical theorems more incisive than those

provided in [2].

It is the purpose of this article to provide SR Graph theorems

that subsume the earlier ones and that give concordance information

about networks for which the theorems in [2] say nothing. Proofs

of the broader theorems presented here turn out to be considerably

simpler than the proofs of the narrower ones given in [2].

Readers interested only in the rich dynamical information carried

by a network’s SR Graph can proceed directly to Theorems 4.1 and 5.1

after reading Section 3 and, to a lesser extent, Section 2. Although net-

work concordance underlies their proofs, those theorem statements

make no reference to the concordance idea.

Remark 1.1. See [1] and [2] for a discussion of earlier work [6–12] that

connects properties of the Species-Reaction Graph (or the Species-

Complex-Linkage Graph) to qualitative dynamics, in particular to the

preclusion of multiple equilibria. Here it is worth pointing out once

again that the earlier SR Graph results were confined to mass action

kinetics until the surprising papers of Banaji and Craciun [11,12].

Remark 1.2. In this paper we will impose a fairly inconsequential

restriction that was also imposed in [2,12]: It will be understood

that, in connection with the SR Graph theorems, we consider only

networks in which no species appears as both a reactant and a product

in the same reaction. For example, we preclude from consideration a

network containing the reaction A + B → 2A, but we do not preclude

a network containing the reactions A + B → C → 2A.

Remark 1.3. A formal definition of a weakly monotonic kinetics [1]

for a network is provided in Appendix A. In less formal terms, weak

monotonicity reflects a natural restriction on the relationship be-

tween mixture composition and the rates of a network’s various re-

actions: For each reaction, an increase in its occurrence rate requires

an increase in the concentration of at least one of its reactant species.

Mass action kinetics provides an example of a weakly monotonic ki-

netics, but the weakly monotonic class is far wider. For example, the

reaction A + B → C might be governed by a rate function such as

αcAcB

β + γ cA + δcB
,

where α,β, γ , and δ are positive.

In Section 5, we will also make reference to two-way weakly mono-

tonic kinetics, which is defined formally in [1] and which is similar

to what Banaji and Craciun [11,12] call NAC kinetics. The two-way

weakly monotonic class of kinetics extends the weakly monotonic

class to admit reaction-rate functions consistent with the possibility

of product inhibition: For each reaction, an increase in its rate re-

quires an increase in the concentration of at least one of its reactant

species or a decrease in the concentration of at least one of its product

species. Thus, for example, the reaction A → B might be governed by

a rate function such as

αcA

β + γ cB
.

2. Prelude: Fully open and nondegenerate networks

A reaction network is fully open if, for each species s in the network,

there is a reaction of the form s → 0 (s reacts to zero). Such a reaction

is often introduced to model either the degradation of species s to in-

consequential products or the physical effusion of s from the reacting

mixture. (The network might also contain reactions of the form 0 → s

to model the synthesis or infusion of species s.)

Fully open reaction networks are, in some respects, easier to study

than other networks. They have certain features that make for some

simplicity in the mathematics; in particular, constraints imposed by

stoichiometry become less consequential. The fully open extension

of a given reaction network is the network obtained by adding all

reactions of the form s → 0 that are not already present. In some

instances, properties of a network’s fully open extension are inherited

by the network itself.

In fact, apart from certain degenerate networks discussed below

(and more fully in Appendix C), a network is concordant if the net-

work’s fully open extension is concordant. For this reason, it is of

interest to determine whether a network’s fully open extension is

concordant. This is so not only because fully open networks are easier

to study but also because concordance of the network’s fully open

extension actually gives important dynamical information beyond

that given by concordance of the network itself. In particular, when a

network’s fully open extension is concordant and when the kinetics

is differentiably monotonic, not only are multiple positive stoichio-

metrically compatible equilibria impossible for the original network,

but also all real eigenvalues at any positive equilibrium are strictly

negative [1].

We say that a network is nondegenerate if, for the network, there is

even one choice of a differentiably monotonic kinetics such that there

exists some positive composition (not necessarily an equilibrium) at

which the derivative of the species-formation rate function is non-

singular [2]. Otherwise, we say that the network is degenerate. Note

that in this context nondegeneracy (or degeneracy) is a property of a

network.

Degenerate networks make for poor models of real behavior, for

they typically lack robustness. For example, a mass action model de-

rived from a degenerate network might admit multiple stoichiomet-

rically compatible equilibria, but the multiplicity of equilibria can

disappear if the model is perturbed just slightly, say by adding the

reverse of an existing reaction and assigning to it a vanishingly small

rate constant.6 An example is provided in Appendix C.

The nondegenerate networks are precisely the ones for which con-

cordance of the fully open extension ensures concordance of the net-

work itself. Especially among networks that have the capacity to ad-

mit a positive equilibrium, degeneracy is rare. In fact, every reversible

network is nondegenerate (as is every weakly reversible network), but

reversibility (or, more generally, weak reversibility) is far from nec-

essary for nondegeneracy.

Because chemists often insist that every naturally occurring net-

work of chemical reactions is reversible, if only to a small extent,7

they might regard degeneracy of a particular reaction network model

to have roots in the improper neglect of reverse reactions that should

have, in fact, been taken into account. Indeed, any degenerate reac-

tion network model becomes nondegenerate when it is perturbed

by the addition of sufficiently many reverse reactions, usually few in

number.8 Moreover, every fully open network is nondegenerate, regard-

less of what the reactions are (Remark C.6).

In Appendix C we provide a fuller discussion of network nonde-

generacy, including characterizations of nondegeneracy in terms of

network structure alone. In [5] we provide a tool to decide a network’s

6 Perverse mathematical phenomena of this kind should not be confused with other

model perturbations involving the addition of a reverse reaction but in which changes

of behavior require a substantial rate constant for the reaction added. Perturbations of

this second kind appear in Section 4.
7 With mass action kinetics, for example, the reverse rate constant might be ex-

tremely small.
8 It is sufficient for nondegeneracy, but certainly not necessary, that there be r lin-

early independent reactions that are reversible, where r is the rank of the network

(Definition 6.3). See Proposition C.22 in Appendix C.
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