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a b s t r a c t

Integrodifference equations have recently been used as models for populations undergoing climate-driven

habitat movement. In these models, the persistence of a population is governed by the maximal or dominant

eigenvalue of a Fredholm integral equation with an asymmetric kernel; this eigenvalue determines the

critical translational speed for extinction of the population. Since direct methods for finding eigenvalues

are often analytically or computationally expensive, we explored the extensive literature on alternative

methods for localizing maximal eigenvalues. We found that a sequence of iterated row sums provide upper

and lower bounds for the maximal eigenvalue. Alternatively, arithmetic and geometric symmetrization yield

upper and lower bounds. Geometric symmetrization is especially valuable and leads to a simple Rayleigh

quotient that can be used to analytically approximate the critical-speed curve. Our research sheds new

light on the interpretation and limitations of the average-dispersal-success approximation; it also provides a

generalization of this useful tool for asymmetric kernels.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Earth is getting warmer. Many species have responded to this

warming by shifting their distributions [1–3]. High velocities of cli-

mate change [4,5] can, however, reduce population sizes and threaten

species [6,7].

Recently, Zhou and Kot [8,9] used the integrodifference equation

(IDE)

nt+1(x) =
L/2 + ct∫

−L/2 + ct

k(x − y) f [nt(y)] dy (1)

to study climate-driven populations. This model maps the density of

a population in generation t, nt(x), to a new density, nt+1(x), in two

discrete stages. During the first (or sedentary) stage, individuals inside

a habitat patch, the interval [−L/2 + ct, L/2 + ct], grow, reproduce,

and die. At each point x inside the interval, the local population, nt(x),
produces f [nt(x)] propagules. The interval, initially [−L/2, L/2], moves

to the right, because of climate change, with translational speed c.

During the second (or dispersal) stage, propagules disseminate. The

dispersal kernel k(x) is the (nonnegative) probability density function

for the displacement of propagules. A convolution integral tallies the

contributions from all sources y, in the interval [−L/2 + ct, L/2 + ct],

to each destination x (both inside and outside the habitat patch).
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Analyses of model (1) suggest that a moving habitat can have

a profound effect on the dynamics of a population. Speed, in gen-

eral, kills. Rapid translational shifts lead to ineffective dispersal (as

propagules fall behind a moving habitat patch) and to either death

or reproductive failure. For each growth rate, patch size, and disper-

sal kernel, there exists a critical translational speed beyond which

the population goes extinct. Zhou and Kot [8,9] developed methods

for determining this critical speed. Harsch et al. [10] extended model

(1) to age- and stage-structured populations. Potapov and Lewis [11],

Berestycki et al. [12], and Leroux et al. [13], in turn, obtained similar

results using reaction–diffusion models.

One advantage of model (1) is that it quickly engenders a simple

eigenvalue problem that determines the viability of a moving popula-

tion. The critical speed is typically found by looking for translational

speeds that cause the maximal eigenvalue, the positive real eigen-

value of largest modulus, to equal one.

The most direct methods for finding the maximal eigenvalue are

to find and order all the eigenvalues or to use simple numerical meth-

ods, such as the power method, that generate dominant eigenvalues.

These methods are often analytically or computationally expensive.

There is also, however, a large literature, going back to Frobenius [14],

dedicated to localizing maximal eigenvalues by other means. We per-

formed an exhaustive survey of this literature and report on several

efficient methods for determining tight upper and lower bounds on

the critical speed of extinction.

In Section 2, we quickly derive the eigenvalue problem for the vi-

ability of a moving population and review the methods that have

been used to determine the critical speed of extinction. We also
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discuss the strengths and weaknesses of these methods. In Section 3,

we review classical methods for localizing maximal eigenvalues and

show how iterated row (and column) sums [15,16] can be used to

bound the critical speed of extinction. In Section 4, we use recent

results on the symmetrization of matrices [17–19] to obtain upper

and lower bounds for critical-speed curves. In Section 5, we use geo-

metric symmetrization to analytically approximate the critical-speed

curves for two well-known kernels. Our results shed new light on the

interpretation and limitations of the widely used average-dispersal-

success approximation [20–23]. They also lead to an extension of this

approximation for asymmetric kernels. We discuss these topics in

Section 6.

2. Persistence

In the absence of Allee [24] effects, the persistence of a population

governed by Eq. (1) is equivalent to instability of the trivial solution

nt(x) = 0. The stability of this trivial solution is, in turn, determined

by the linear equation

nt+1(x) = R0

L/2+ct∫
−L/2+ct

k(x − y)nt(y)dy, (2)

where R0 = f ′(0) is the net reproductive rate. Since we are interested

in solutions that persist in a moving frame, we focus on perturbations

to the trivial solution that can be written

nt(x) = λt u(x) ≡ λt u(x − ct). (3)

This ansatz quickly generates the eigenvalue problem

λ u(x) = R0

L/2∫
−L/2

k(x + c − y)u(y)dy, (4)

where we have dropped the bars on x and y for notational conve-

nience. (For the units to make sense, please note that c here is actually

c�t with �t equal to one.) See Zhou and Kot [8] for details.

Eq. (4) is a homogeneous Fredholm integral equation of the second

kind. The kernel k(x + c − y) of this integral equation is either non-

negative or positive. Because of the translational speed c, the kernel is

not, in general, symmetric. The parameter λ is an eigenvalue; u(x) �= 0

is the corresponding eigenfunction.

Eigenvalue problem (4) is nasty. If, however, our integral opera-

tor is compact (completely continuous), the problem simplifies. The

eigenvalues then form a discrete set. This set may be finite, countably

infinite, or empty [25]. Each eigenvalue has finite multiplicity and

eigenvalues can only accumulate at zero. Compact integral operators

act much like matrices.

To guarantee compactness, we will assume that x ∈ [−L/2, L/2]

and y ∈ [−L/2, L/2] for finite L and that our kernel is a continuous

function [26]. Thus, we assume that the environment is completely

hostile outside the patch. See Hutson and Pym [27] for less restrictive

conditions for compactness.

If the kernel is positive, we can also exploit [51] theorem. This

theorem is analogous to the Perron–Frobenius theorem for positive

matrices. If the conditions of this theorem are satisfied, eigenvalue

problem (4) has a simple, positive eigenvalue of largest modulus (with

a positive eigenfunction) that dominates all other eigenvalues. For

sufficiently large R0, the trivial solution then loses stability through

λ = 1 as the translational speed decreases through the critical speed,

and we can easily solve for the critical speed as a function of the other

parameters in our model.

The restriction that the kernel is strictly positive is important [25].

If the kernel is only nonnegative, eigenvalues need not exist. If the

kernel is only nonnegative and eigenvalues do exist, there is then

a positive and real maximal eigenvalue at least as large as all other

eigenvalues. This root may not, however, be simple, and there may be
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Fig. 1. A plot of the critical speed (for extinction) as a function of the net reproductive

rate R0 based upon Eq. (6) with patch size L = 1 and dispersal parameter ω = π/4.

other eigenvalues of equal magnitude. This maximal eigenvalue has

a nonnegative eigenfunction. We will assume, for convenience, that

our kernel is strictly positive throughout this paper.

To date, we have solved eigenvalue problem (4) in three ways:

(a) Analytically

Eigenvalue problem (4) simplifies to a finite-dimensional problem

in linear algebra if its kernel is separable (or degenerate). A kernel is

separable [28,29] if it can be written as a finite sum, with each term in

the sum the product of a function of x alone and a function of y alone.

If a separable kernel is simple enough, the dominant eigenvalue and

the critical speed c∗ can be determined analytically.

For example, we can use the cosine angle-addition formula to

reduce

k(x − y) =
{

ω
2

cos ω(x − y), |x − y| ≤ π
2ω ,

0, |x − y| > π
2ω ,

(5)

to a positive, separable kernel for the case where the radius of dis-

persal, π/(2ω), is larger than the patch size and the shift speed c is

sufficiently small. Zhou and Kot [8] thus showed that

c∗ = 1

ω
cos−1

[
16 + R2

0 (ω2L2 − sin
2 ωL)

8 R0 ω L

]
(6)

(see Fig. 1). Speeds above this curve lead to extinction. Higher net

reproductive rates R0 allow higher shift speeds.

(b) Numerically

Eigenvalue problem (4) can also be solved using numerical meth-

ods such as Nyström’s method [30,31]. This method discretizes the

integral on the right-hand side of Eq. (4) using a quadrature rule and

reduces the eigenvalue problem from that of an integral operator to

that of a matrix.

Consider, for example, m spatial grid points, xi or yi, i = 1, . . . , m,

that divide the interval [−L/2, L/2] into m − 1 subintervals of equal

length �y = L/(m − 1) . If we now use the repeated trapezoidal rule,

Eq. (4) reduces to the matrix system

λ u = R0 K u, (7)

where u is now an m × 1 vector of densities and K is an m × m matrix

with elements kij, i, j = 1, . . . , m, that are given in terms of the original
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