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a b s t r a c t

In this paper, the synchronization problem of coupled Markov jump genetic oscillator networks with time-

varying delays and external disturbances is investigated. By introducing the drive-response concept, a novel

mode-dependent control scheme is proposed, which guarantees that the synchronization can be achieved.

By applying the Lyapunov–Krasovskii functional method and stochastic analysis, sufficient conditions are

established based on passivity theory in terms of linear matrix inequalities. A numerical example is provided

to demonstrate the effectiveness of our theoretical results.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The past decade has witnessed substantial progress toward the

researches on genetic oscillator networks (GONs) due to their biolog-

ical implications and potential applications in biological and biomed-

ical science [1,2]. GONs are inherently coupled complex biochemical

systems, where the nodes represent the genetic oscillators and the

couplings denote the interactions between neighboring oscillators.

With the development in mathematics and experiments concerning

the genetic regulatory mechanisms, the dynamical behaviors of GONs

are investigated to understand the living organisms. In particular, it

has been demonstrated experimentally that the transition in genetic

networks from one state to the next with certain transition probabil-

ities can be determined by a homogeneous Markov chain with finite

state. As a result, several important results of Markov jump genetic

networks can be found in the remarkable papers [3–6].

Synchronization, as an emerging phenomenon of dynamically in-

teracting systems, has played an important role in different fields,

such as biology, ecology, sociology and technology [7–9]. Recently,

some researchers have sparked an interest in the synchronization of

GONs to offer insight into the nature of diverse biological systems and

to design coupled GONs in practice [10–13]. It is worth mentioning
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that the external disturbances of GONs are always inevitable. More-

over, the time delays are particularly important for GONs due to the

slow processes of transcription, translation, and translocation, such

that it is necessary to address the delay effects in the mathematical

models [14,15].

On the other hand, by utilizing an input–output description based

on energy-related considerations, the passivity theory can provide an

important framework for the analysis and design of control systems.

The key idea behind this is that a large number of physical systems

have certain input–output properties related to the conservation, dis-

sipation and transport of energy. As is well known, a passive system

having a positive definite storage function is Lyapunov stable. For

such reasons, passivity theory has many applications in various areas,

such as electrical circuits, nonlinear systems and complex networks

[16–18]. Recently, the concept of passivity has attracted increasing

attention in synchronization of chaos system and neural networks

[19–23]. However, to the best of the authors’ knowledge, for the pas-

sive synchronization of GONs, there is no result in the literature so

far, which still remains open and challenging. This motivates us for

this study.

The aim of this paper is to make one of the first attempts to in-

vestigate the synchronization problem of Markov jump GONs with

time-varying delays and external disturbances. The regulation func-

tions are assumed to be sector-like and the time-varying delays are

bounded. The 1 + N drive-response model is introduced for the syn-

chronization of Markov jump GONs, which is different from the exist-

ing studies. By applying the Lyapunov–Krasovskii functional method

and stochastic analysis, a model-dependent passivity-based strategy
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is developed for achieving the stochastic synchronization of Markov

jump GONs. In contrast with existing results on synchronization of

GONs, the main contributions of this paper are as follows. First, the

1 + N drive-response model is introduced, which is more applicable

for the synchronization of GONs. Second, the controller design scheme

is given to guarantee that the Markov jump GONs are synchronized,

while on some existing work, the controller design problem was not

considered. Third, passivity theory is used for the synchronization of

GONs by which the disturbance attenuation can be obtained.

The rest of this paper is organized as follows. Section 2 introduces

some preliminaries and formulates the synchronization problem. In

Section 3, by utilizing the passivity theory, delay-dependent results on

synchronization of Markov jump GONs are presented. Section 4 gives

a numerical example to illustrate the effectiveness of the derived

results and the conclusion is drawn in Section 5.

Notation: The notation used in this paper is fairly standard. Rn de-

notes the n dimensional Euclidean space, R
m×n represents the set of

all m × n real matrices and N
+ stands for the set of positive integers. I

and 0 represent identity matrix and zero matrix with appropriate di-

mensions, respectively. L2 [0, ∞)
is the space of square-integrable

vector functions over [0, ∞)
. The notation P > 0 means P is real

symmetric and positive definite. The Kronecker product of matrices

Q ∈ R
m×n and R ∈ R

p×q is a matrix in R
mp×nq and denoted as Q ⊗ R.

In addition, in symmetric block matrices, * is used as an ellipsis for

the terms that are introduced by symmetry and diag{· · · } denotes a

block-diagonal matrix. For the notation (�,F ,P), � represents the

sample space, F is the σ -algebra of subsets of the sample space and

P is the probability measure on F . E {·} stands for the mathematical

expectation. Finally, all matrices, if not explicitly stated, are assumed

to have compatible dimensions.

2. Problem formulation and preliminaries

Consider a group of N coupled Markov jump GONs with time-

varying delays defined in a complete probability (�,F ,P), which can

be described as

ẋi(t) = A(rt)xi(t)+ B(rt)f (xi(t))+ C(rt)g(xi(t − τ(t)))

+
∑

1≤i<j≤N

Gij�(rt)xj(t − σ(t)), (1)

with each isolated node given by

ẋi(t) = A(rt)xi(t)+ B(rt)f (xi(t))+ C(rt)g(xi(t − τ(t))). (2)

xi(t) = [xi,1(t), xi,2(t), . . . , xi,n(t)]
T ∈ R

n is the state vector of the ith ge-

netic oscillator representing the concentrations of proteins, mRNAs

and chemical complexes. f (xi(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]
T

and g(xi(t − τ(t))) = [g1(x1(t − τ)), g2(x2(t − τ)), . . . , gn(xn(t − τ))]T

are monotonic functions satisfying the sector-bounded conditions,

which usually are of the Michaelis–Menten or Hill form. �(rt) is the

inner linking matrix in each node, respectively. G = (Gij)N×N is the

coupling matrix of the networks representing the coupling strength

and topological structure of the networks. It is further defined as

follows: if there is a link from oscillator j to oscillator i (i �= j) then

Gij > 0; otherwise, Gij = 0, Gii = − ∑N
j=1,j �=i Gij; τ(t) and σ(t) are time

delays. All A(rt), B(rt), C(rt), �(rt) are known constant matrices with

appropriate dimensions for a fixed system mode.

The initial condition associated with (1) is given as follows:

xi(t) = φ(t), rt|t=0 = r0 ∈ I, t ∈ max[τ , σ ], i = 1, . . . , N.

Remark 1. As discussed in Section 1, the genetic oscillators are tightly

coupled with each other, which exhibit the characteristics of the

GONs. Note that the links from one oscillator to others are consid-

ered to be with time delays, which are more general and realistic

when modeling GONs from the practice point of view.

The parameter rt (t ≥ 0) represents a right-continuous Markov

process on a complete probability space (�,F ,P), taking values in

a finite set I � {1, . . . , M} with generator � = {πlm} , ∀l, m ∈ I de-

scribed as

Pr(rt+	t = m : rt = l) =
{

πlm	t + o(	t) if l �= m,

1 + πll	t + o(	t) if l = m,

with 	t > 0, lim(o(	t)/	t) = 0 and πlm ≥ 0 (l, m ∈ I, m �= l) is the

transition rate from mode l at time t to mode m at time t + 	t, while

πll = −∑M
m=1,m �=l πij for ∀l ∈ I. For convenience, in the sequel, each

possible value of rt is denoted by l, l ∈ I.

The 1 + N synchronization problem of the Markov jump GONs (1)

is considered by using the drive-response configuration. Suppose that

another isolated node out of the N coupled GONs (1) is selected as a

drive system. According to the drive-response concept, the controlled

response GONs are given by

ẏi(t) = Alyi(t)+ Blf (yi(t))+ Clg(yi(t − τ(t)))

+
∑

1≤i<j≤N

Gij�lyj(t − σ(t))+ uli(t)+ Fl
i(t), (3)

where yi(t) is the state vector of the response GONs, uli(t) and


i(t) ∈ L2 [0, ∞)
denote the control input and the external distur-

bance, respectively.

Remark 2. In this 1 + N drive-response synchronization model, when

N = 1, the model can be reduced to a normal drive-response synchro-

nization model. Moreover, the model is capable of coupled synchro-

nization model while the drive system is not considered.

Define the synchronization error ei(t) = yi(t)− xs(t), where xs(t)
is the state vector of the drive genetic oscillator. Then the following

synchronization error system can be obtained from (2) and ( 3):

ei(t) = Alei(t)+ Bl(f (yi(t))− f (xs(t)))+ Cl(g(yi(t − τ(t)))

− g(xs(t − τ(t))))+
∑

1≤i<j≤N

Gij�lyj(t − σ(t))

+ uli(t)+ Fl(
i(t)− 
s(t)). (4)

By using the matrix Kronecker product, the error dynamical net-

works (4) can be rewritten as

ė(t) = (IN ⊗ Al)e(t)+ (IN ⊗ Bl)(f(ȳ(t)))+ (IN ⊗ Cl)(g(ȳ(t − τ(t))))

+ (G ⊗ �l)y(t − σ(t))+ ul + (IN ⊗ Fl)
(t). (5)

where

e(t) =
[
eT

1(t), . . . , eT
N(t)

]T

,

f(ȳ(t))) =
[
f T(y1(t))− f T(xs(t)), . . . , f T(yN(t))− f T(xs(t))

]T

,

g(ȳ(t − τ(t))) =
[
gT(y1(t − τ(t)))− gT(xs(t − τ(t))), . . . ,

gT(yN(t − τ(t)))− gT(xs(t − τ(t)))
]T

y(t − σ(t)) =
[
yT

1(t − σ(t)), . . . , yT
N(t − σ(t))

]T

,

ul(t) =
[
uT

l1(t), . . . , uT
lN(t)

]T

,


(t) =
[

 T

1 (t)− 
 T
s (t), . . . ,
 T

N (t)− 
 T
s (t)

]T

.

For convenience, the output of the above error dynamical net-

works is given as Z(t) = e(t). Moreover, the following assumptions

are given.

Assumption 1. The nonlinear functions f (·)and g(·)satisfy the following

sector-like conditions [24,25]:

0 ≤ fi(s)− fi(t)

s − t
≤ κ1i, 0 ≤ gi(s)− gi(t)

s − t
≤ κ2i, i = 1, . . . , N. (6)

Remark 3. By Assumption 1, it can be obtained that

f T(y)(f (y)− κ1y) ≤ 0, gT(y)(g(y)− κ2y) ≤ 0 (7)
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