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a b s t r a c t

This paper presents a global practical identifiability theory for analyzing and identifying linear and nonlinear

compartmental models. The compartmental system is prolonged onto the potential jet space to formulate

a set of input–output equations that are integrals in terms of the measured data, which allows for robust

identification of parameters without requiring any simulation of the model differential equations. Two classes

of linear and non-linear compartmental models are considered. The theory is first applied to analyze the linear

nitrous oxide (N2O) uptake model. The fitting accuracy of the identified models from differential jet space

and potential jet space identifiability theories is compared with a realistic noise level of 3% which is derived

from sensor noise data in the literature. The potential jet space approach gave a match that was well within

the coefficient of variation. The differential jet space formulation was unstable and not suitable for parameter

identification. The proposed theory is then applied to a nonlinear immunological model for mastitis in cows.

In addition, the model formulation is extended to include an iterative method which allows initial conditions

to be accurately identified. With up to 10% noise, the potential jet space theory predicts the normalized

population concentration infected with pathogens, to within 9% of the true curve.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The approach of in silico trials is very useful for testing new algo-

rithms and models before implementation in a clinical environment

and helps to generate novel predictions and hypotheses that enhance

understanding of complex pharmacological systems [15]. A number

of parameters characterizing the behavior of these systems are gen-

erally not accessible to direct measurement. Their values are thus

approximated indirectly as a parameter identification problem [6].

Many biological, physiological and pharmacological systems are ade-

quately described using first order, non-linear differential equations

models describing the internal structure of the systems. A commonly

used approximation that often suffices to capture the underlying dy-

namics is linear compartmental models [29].

Structural identifiability is an important prerequisite for the pa-

rameter estimation. If the models are not identifiable, any numer-

ical optimization approach that seeks to find the parameters from

measured data will be ill-conditioned and will not give physiolog-

ically consistent and accurate answers. Thus, the resulting estimate

would not be reliable for in silico experiments. However, identifiability
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analyses can provide insight into the design of suitable experiments

to provide unique identifiability and combined with in silico testing

can provide guidelines or protocols for expensive or difficult in vivo

experiments [7,24].

Identifiability analyses have been formalized by Bellman and As-

trom for linear compartmental models [9]. The early theories of iden-

tifiability analyses concentrate on the similarity transform of the

state matrix, and testing the rank of this transform [20,39]. Other

approaches have used the Laplace transform of the input and output

for identifiability [19,40,43].

Different approaches to the non-linear identifiability problem

have been proposed in the literature, for example the Pohjanpalo

Taylor series method [34], and the differential algebra based method

[5,10,27,30,32]. Sedoglavic [37] constructs the variational system

from the differential equation model to compute the required Jaco-

bians to test for local algebraic observability. Karlssson [27] developed

an efficient method for local structural identifiability analysis of very

large scale systems, through a computation of random integer coeffi-

cient power series. The differential algebra based method is becoming

more widely used due to its usefulness in addressing global as well as

local models. Algorithms have been successfully developed and im-

plemented in a range of available software packages [2,10,27,30]. In

addition, probabilistic approaches have been developed and imple-

mented [35,36]. Once structural identifiability has been determined,

algorithms for parameter estimation in models of dynamical systems
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given discrete time measurement data can be applied. A survey on

such algorithms is given in Ref. [44].

The current linear and non-linear global differential identifiability

theories only address the existence of a unique set of parameters that

match any given data set described by the model. In other words, the

theory used to prove global identifiability gives no means to iden-

tify the parameters once the model is shown to be identifiable. The

major problem is that differentials are very sensitive to noise so the

formulation cannot be applied to real data [11]. Note that the profile

likelihood approach developed by Raue et al. [35] provides a method

to identify confidence interval estimates of the parameters from mea-

sured data, but only proves local identifiability and requires numerous

computations in the solution domain.

This work presents a practical implementable approach to global

identifiability theory by prolongation of the original compartmen-

tal differential equation models onto the potential jet space. This

method allows the input–output equations to be formulated entirely

in terms of integrals, so that measured data can be transformed on to

the potential jetspace surface and parameter identification achieved

without requiring any numerical solution of the underlying model.

In other words, all computations are performed on the potential jet

space which is highly efficient computationally and robust to noise.

For the special case of the first order, minimal model of glucose–

insulin dynamics, the method provides the mathematical foundation

behind the previously developed integral method which has been

used extensively in critical care [22]. The proposed theory is applied

to a number of compartmental systems and provides both a theory

for identifiability and a direct method for system identification. This

method is shown to be robust to noise and thus suitable for practical

modeling and experimental design.

2. Methodology

2.1. Differential Jet space

Differential equations, from a group transformations point of view,

act on the space co-ordinatized by the dependent and independent

variables. These group transformations give rise to the differential

jet space, which forms the basis of most of the current approaches

of identifiability analysis, since their actions are essentially the pro-

longation of the set of differential equations onto the differential jet

space. This section gives an overview of the transformations and func-

tions as well as the definition of the differential jet space [33].

A simple system of differential equation involves one indepen-

dent variable t (time) on T , and q dependent variables (states)

x = (x1, . . ., xq) as coordinates on X � R
q. The total space is the Eu-

clidean space E = T × X � R1+q coordinatized by the independent and

dependent variables.

Definition 1. The total space E = T × X � R
1 × R

q the nth differen-

tial jet space Jn = JnE = T × X(n) is the Euclidean space of dimension

1 + q(n) = 1 + q
(1+n

n

)
, whose co-ordinates consist of the time t, the q

dependent variables xα , and the derivative co-ordinates defined:

x
J
α = d

dtα
f α(t), α = 1, . . ., q. (1)

Definition 2. A smooth function x = f (t) from T to X has nth pro-

longation x(n) = f (n)(t), which is a function from T to X(n) obtained by

evaluating all derivatives of f up to order n. The individual coordinate

function of f (n)(t) is given by Eq. (1).

As an example, consider a simple map f : T → X, t �→ x = f (t),
which maps the T axis onto the X axis. A 0-jet is given simply by

its graph (t, f (t)). A 1-jet is given by the co-ordinate (t, f (t), ˙f (t)). A

2-jet is given by (t, f (t), ˙f (t), ¨f (t)), and so on up to the n-jet. The set of

all k-jets from T to X is called the k-jet space.

Formally, in terms of equivalence classes of section s in smooth

vector bundle π , defined by [s]k
t , the k-jet space is defined [25]:

Jk(π) = {[s]k
t : t ∈ T, s ∈ �(π)} (2)

The k-jet space is endowed with a smooth manifold structure, which

is called the manifold of k-jets of sections of π and the following maps

defined:

πk : Jk(π) → T, [s]k
t → t (3)

πk,l : Jk(π) → Jl(π), [s]k
t → [s]l

t, k ≥ l (4)

are smooth fiber bundles. Eqs. (3) and (4) make it possible to write

a given differential equation on sections of a bundle in an invariant

form [25]. Most of the analyses of jet spaces focus on the case where

k = ∞, that is, the space of J∞(π), which is understood to be the limit

of the chain:

· · · → Jk+1(π)
πk+1,k→ Jk(π) → · · · → J1(π)

π1,0→ J0(π) (5)

2.1.1. Geometric interpretation of the differential jet space

As an aid to understanding the differential jet space, this section

gives numerical examples to demonstrate the geometric aspects in

the differential jet space.

Consider the first order differential equations defined:

ẏ − y = 0, y(0) = 1 (6)

ẏ + y2 = 0 y(0) = 1 (7)

The analytical solutions of Eqs. (6) and (7) are defined:

y(t) = exp(t) (8)

y(t) = 1

t + 1
(9)

Eqs. (6) and (7) represent a plane and parabolic surface respectively in

the 1-jet space (t, y, ẏ) and are plotted in Figs. 1 and 2. The solutions of

Eqs. (8) and (9) for a given initial condition are plotted as blue dashed

curves on the (t, y)plane and their corresponding prolongation to the

1-jet space are the 3D space curves denoted by black lines. In theory,

any measured data could be represented on the surfaces of Figs. 1 and

2 without having to solve the equations, but requires differentiation,

which is sensitive to noise. The 1-jet space surfaces consist of the

prolongated solutions of Eqs. (8) and (9) for all initial conditions y(0) ∈
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Fig. 1. 3D surface visualization for the differential jet space of Eq. (6) including the

solution curve (blue dashed lines) and prolonged solution space curve (black solid

lines).(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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