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a b s t r a c t

This paper extends the final size result of the classical SIR epidemic model in constant and periodic envi-

ronments to random environment. Conditionally on the basic reproduction number R0 recently defined for

random environment and the initial infected population fraction, we prove a final size result of an epidemic

governed by the SIR model with time-depending parameters. The parameters are driven by an ergodic inho-

mogeneous time-periodic Markov process with finite state space. We also analyze the classical SEIR epidemic

model in random environment.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Model construction

Consider a closed population divided into three compartments: S

for susceptible, I for infected and R for removed. We suppose that S(t),

I(t) and R(t) give the population proportion of each compartment at

time t, so, S(t) + I(t) + R(t) = 1. This paper deals, in a wide part, with

the well-known SIR epidemic model:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt
S(t) = −a(t)S(t)I(t),

d

dt
I(t) = a(t)S(t)I(t) − b(t)I(t),

d

dt
R(t) = b(t)I(t),

(1)

with a(t) = aθ (t) and b(t) = bθ (t) be positive right continuous

bounded functions describing the infection and recovery mecha-

nisms, respectively. The environmental process θ is assumed to be an

ergodic Markov process with state space {1, 2, . . . , K} governed by an

inhomogeneous T-periodic transition density Q(t) (see [10], we note

that in population dynamics Q(t) is commonly used in place of Q(t)∗,

where ∗ stands for the transpose matrix operator, as is known in the
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probability theory) supposed to be irreducible and continuous with

an initial distribution law μ. This choice expresses a natural mixture

between periodic and random influences of environment. One im-

portant candidate external force that will influence parameters are

the climatic conditions (see [12]) which seems for us that it has such

evolution given by θ .

Following [5] (see also a known result for the periodic-coefficients

equations [1]) one can check the existence of an unique T-periodic

stationary probability u(t) = (u1(t), . . . , uK (t))′ on {1, 2, . . . , K},
where the symbol ′ stands for the transpose operator, such that

d

dt
u(t) = Q(t)u(t), ∀t > 0 and u(0) = μ. (2)

We assume that (1) start by

S(0) = 1 − i < 1, I(0) = i, R(0) = 0. (3)

Using sample path reasoning, one can show that the solution of (1)

stays in [0, 1]3, that S is decreasing, R is increasing and that I∞ :=
lim

t−→∞
I(t) = 0.

1.2. The basic reproduction number

The classical concept of the basic reproduction number R0 has

been extended from constant environments in [9], to periodic envi-

ronments in [7], and to random environments in [5]. One epidemi-

ological ‘common’ interpretation of this quantity is “the number by

which all infection rates should be divided to bring the epidemic to
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the critical situation where neither exponential growth nor exponen-

tial decay occurs”. In this part we give the mathematical definition of

R0 for (1). For this purpose, for any k in {1, 2, . . . , K} we define uk to

be the mean of uk(.); i.e.

uk := 1

T

∫ T

0

uk(s) ds. (4)

For any vector x = (x1, . . . , xK ), let

x =
K∑

k=1

xkuk, (5)

be the mean of x weighted by the stationary probability u.

Using [13] (Example 2.2 (c), one can see that u(t) = P(t, 0)μ
where P(t, 0) is the transition matrix of θ and we can use the

Lebesgue measure instead of the example-measure) we get an er-

godic result; for all bounded functions f defined on {1, . . . , K}, almost

surely, we have

lim
t−→∞

1

t

∫ t

0

f (θ (s)) ds =
K∑

k=1

f (k)uk. (6)

The basic reproduction number in our case is then given by R0 = ā/b̄.

Indeed, let the second equation of (1) near the disease-free equilib-

rium (1, 0, 0), we have

d

dt
I(t) = (a(t) − b(t))I(t). (7)

Following [5], define the largest Lyapunov exponent of (7):

λ(a, b) := lim
t−→∞

1

t
log(I(s))

= lim
t−→∞

1

t

∫ t

0

(a(s) − b(s))ds. (8)

By (6), we have λ(a, b) = λ = a − b. Then, the basic reproduction

number is defined as the unique positive real number R0 such that

λ(a/R0, b) = 0. Hence R0 = a/b. The quantity λ = a − b is the aver-

age net infection rate, which defines the asymptotic growth rate of

the linearized SIR model and we have the following simple result

sign(λ) = sign(R0 − 1).

1.3. The aim of the paper

Our goal is to study the final epidemic size R∞, the limit of R(t)

as t −→ ∞, as a function of R0 and i. We prove that : R∞ is, almost

surely, close to 0 if the basic reproduction number R0 is strictly lower

than 1 and i is close to 0, and is bigger than 1 − 1/R0, if R0 is strictly

bigger than 1 and i �= 0.

The final epidemic size of the SIR model in constant environ-

ments; i.e. (a(t), b(t)) = (a, b) for all t, is given implicitly by the

formula

(1 − R∞)eR0R∞ = 1 − i, (9)

where R0 is equal to a
b

. We must see this case as a first approximation

of environmental variation, so a and b are the mean (in the sense of

(5)) of some infection and recovery mechanisms list. Hence, R∞ have

the following asymptotic behavior (as function of i)

R∞ −→ 0, on {R0 < 1, i � 0}, (10)

and

R∞ ≥ 1 − 1

R0

, on {R0 > 1, i �= 0}. (11)

Arino et al. [2] study the final epidemic size in a constant environ-

ment for a general set of epidemic models. Recent work by Artalejo

et al. [3] presents a continuous time Markov stochastic SIS and SIR

epidemic models in a random environment, the authors give some

results for quasi-stationary distribution and the distribution of the

time to extinction. While in [11], a deterministic SIS model in a ran-

dom environment is proposed. In [6], the authors prove that the same

behavior of R∞, in the sense of (10) and (11), happened in periodic

environment for a suitable definition of R0. Using similar techniques

as in [6], this paper extends the latter results to the case of random

environments.

The paper is divided into four parts. Section 2 gives an analytical

proof of (10) and (11) in random environments, that is: if R0 < 1, then

for all ε > 0, there exists α > 0 such that i < α implies R∞ < ε almost

surely; if R0 > 1 and i �= 0, then R∞ ≥ 1 − 1
R0

almost surely. In section

three we give a numerical example shows the validity of the results

of the second section. In the fourth section, we investigate the final

epidemic size in a two infection compartment model, typically, the

SEIR model. The last section presents some conclusions. For details of

the epidemiological significance of SIR (also the derivation of (9)) and

SEIR system one can consult [12].

2. The SIR final size result

2.1. The sub-critical regime

Proposition 1. If R0 < 1, then for all ε > 0 there exists α > 0 such that

R∞ < ε a.s. for each i < α.

Proof. Because of S(t) ≤ 1 for every time t, we have

d

dt
I(t) ≤ (a(t) − b(t))I(t), (12)

so,

I(t) ≤ i exp

[∫ t

0

(a(s) − b(s))ds

]
. (13)

For large time t, we have almost surely

∫ t

0

(a(s) − b(s))ds � λt. (14)

One can conclude, almost surely, that
∫ ∞

0 exp[
∫ t

0 (a(s) − b(s))ds] is

finite and so

C :=
∫ ∞

0

b(t) exp

[∫ t

0

(a(s) − b(s))ds

]
dt, (15)

exists. We have d
dt

R(t) = b(t)I(t), then (almost surely)

R∞ ≤ iC. (16)

The proposition then follows. �

2.2. The supercritical regime

Proposition 2. If R0 > 1 and i �= 0, then R∞ ≥ 1 − 1
R0

almost surely.

Proof. The proof goes on by contradiction. Suppose that

�0 :=
{

1 − R∞ >
1

R0

}
= {R0(1 − R∞) − 1 > 0},

has a positive probability measure. We will work on �0.

We know that

d

dt
I(t) ≥ [a(t)(1 − R∞) − b(t)]I(t) − a(t)I2(t). (17)

But I∞ = lim
t−→∞

I(t) = 0. So, we can choose α satisfying 0 < aα <

b[(1 − R∞)R0 − 1] and t∞ such that 0 ≤ I([t∞, ∞)) ≤ α and I(t∞) > 0.
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