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a b s t r a c t

Simulation studies of cardiac electrophysiological behaviour that use the bidomain model require accurate

values for the bidomain extracellular and intracellular conductivities to produce useful results. This work

considers an inversion algorithm, which has previously been shown, using simulated data, to be capable of

retrieving six bidomain conductivities and the fibre rotation angle from measurements of electric potential

made in the heart. The aim here is to see whether it is possible to improve the accuracy of the retrieved pa-

rameters. The scenario of retrieving only conductivities and not fibre rotation is examined but this does not

lead to a worthwhile improvement in retrieval accuracy. It is also found that it is possible to retrieve the bido-

main conductivities using not two but just one pass of the algorithm, made on a ‘widely-spaced’ electrode

set. This appears to work because the algorithm is still very sensitive to the extracellular conductivities. How-

ever, the single-pass method is not recommended because the intracellular conductivities that are retrieved

are not as accurate as those that are retrieved in the usual two-pass method, particularly for higher values of

added noise. The second part of this work considers retrieving the six conductivities and fibre rotation from

realistically large sets of potential measurements and identifies the best data analysis method. It is found

that, even with added noise of up to 40%, the extracellular conductivities can still be retrieved extremely ac-

curately (relative errors of around 2% on average) and so can the intracellular longitudinal conductivities and

fibre rotation (errors less than 8% on average). The remaining intracellular conductivities have errors that are

generally less than twice the added noise, particularly for the higher noise values.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Increases in computational power over the past ten years or so

have led to major advances in the ability of researchers to realistically

simulate cardiac electrophysiological behaviour and even to work to-

wards the use of heart models that can guide clinical decisions. Along

with these advances, has come the realisation of the importance of

accurate values for the parameters in these models. For example, this

is the case for the conductivity values used in the bidomain model

that is commonly used to model cardiac tissue [1,2]. In addition, not

only is it essential to find conductivity values that represent normal

tissue, it is also necessary to understand how these are affected in

diseased and damaged tissue [1,3].

Despite the bidomain model being used for modelling electro-

physiological phenomena for nearly fifty years [1], only three sets of

experimentally determined bidomain conductivities exist [4–6]. Un-

fortunately, these values are inconsistent [7] and can lead to very

different results in simulation studies [8]. Moreover, these studies

assume that the conductivities in the directions transverse to the
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cardiac fibres (that is within the sheet of fibres and between the

sheets of fibres) are equal [2]. This assumption is inconsistent with

the results of imaging studies of ventricular architecture [2] and has

also been shown to be invalid by experimental studies that have

demonstrated that there are three distinct propagation directions

in cardiac ventricular tissue [9,10]. The only two available datasets

that do not make this assumption [11,12] have not been fully ex-

perimentally determined and also produce inconsistent results in

simulations [13].

There are two areas of major challenge associated with determin-

ing accurate conductivity values. One is associated with the practi-

calities of actually making the measurements and the other is related

to the computational difficulties that occur because the problem of

retrieving the conductivity values from measurements of potential is

mathematically ill-posed.

Recent work in the first of these areas relates to the design

and fabrication of micro-electrodes that can be used to make mea-

surements that will lead to values for cardiac conductivities. For

example, Hooks and Trew [10] have constructed a plunge electrode

array, which was used to measure monodomain conductivities. This

work was extended [14] to a 325 electrode array that was used to

demonstrate the electrically orthotropic nature of cardiac ventricu-

lar tissue. Other groups [15,16] are working on an approach that uses
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MEMS fabricated blocks in conjunction with multi-site interstitial

stimulation.

Some recent work in the second area includes mapping the elec-

trical activation of the tissue and then using a least squares and

singular value decomposition method to obtain the conductivities

[17], while another approach [18] looks at breaking the problem

into a subset of computationally tractable sub-problems. One recent

promising approach that could be used to overcome the difficulties

associated with the inverse problem of estimating parameters from

non-invasive measurements is the Reduced-order Unscented Kalman

Filter method [19], which has been used successfully, using simulated

measurements, to identify material parameters in a non-linear me-

chanical model of the left ventricle.

Proof of concept has recently been shown in silico by the present

authors [20,21] for a technique that can determine the six bidomain

conductivity values (two domains with three propagation directions

in each) that are required to fully describe cardiac tissue conductiv-

ity [9,22]. This is achieved by applying a sub-threshold stimulating

current during the non-excitory phase of the cardiac cycle (ST seg-

ment) and making measurements, using a multi-electrode array, in

vivo in cardiac ventricular tissue in an animal model. These measure-

ments are then used in conjunction with a novel mathematical inver-

sion method to retrieve the conductivities. An additional parameter,

the fibre rotation angle, is also retrieved with this method. This is

the angle through which the sheets of cardiac fibres rotate relative

to one another between the inner and outer heart surfaces. A recent

implementation of the inversion routine on GPUs [23] has resulted

in a speedup that has allowed a more realistic investigation into the

accuracy of these retrievals to be undertaken.

The purpose of this work is first to examine aspects of the inver-

sion method to see if it is possible to improve the accuracy of the

retrieved conductivities, in particular the intracellular conductivities,

which to date have not been retrieved nearly as accurately as the ex-

tracellular conductivities. The second and major aspect of this work

is to consider a realistic simulation where large numbers of poten-

tial measurements would be recorded on the measuring array and to

examine the accuracy of the inversion technique.

This paper presents the model and solution technique

in Section 2 and the inversion algorithm is discussed in Section 3.

Various aspects of the inversion algorithm, such as the effect of

retrieving the fibre rotation in addition to the conductivities, and

the effect of using a single pass of the algorithm rather than two

passes, are examined in the first part of Section 4. The second part

considers sets of one hundred measurements of potential that are

used to mimic a realistic experimental scenario and from these one

hundred sets of parameters are determined for a range of noise levels

associated with two starting sets of six conductivity values [11,12].

Various data analysis techniques are considered for dealing with the

non-physiological values that are sometimes found, while results for

the ‘best’ technique are presented along with conclusions in the final

section.

2. Model and solution method

2.1. Model geometry

Cardiac tissue consists of parallel strands of cells, arranged in

sheets that rotate relative to one another along a line between the

epicardium (outer heart surface) and the endocardium (inner heart

surface). It is well-known that current is able to flow more easily

in the longitudinal (l) direction along the fibres, than transverse (t)

to the fibres within the sheet or between, that is normal (n) to, the

sheets of fibres.

The model considered here is a block of cardiac ventricular tissue

with dimensions 2 cm × 2 cm × 1 cm in (x, y, z) space, lying between

the x−y plane at z = 0, which represents the epicardium, and the x−y

plane at z = 1, which represents the endocardium. From z = 1, ex-

tending to infinity in the positive z direction there is assumed to be a

volume of blood that is in contact with the endocardium. The ventric-

ular tissue is approximated using the bidomain model [1,24–26]. This

regards the tissue as consisting of extracellular (e) and intracellular (i)

interpenetrating domains, over which the cardiac properties are av-

eraged, thus leading to six bidomain cardiac conductivity values gel,

get, gen, gil, git, gin being required in the model.

2.2. Governing equations and boundary conditions

The potentials in cardiac tissue are given by the bidomain govern-

ing equations [25]

∇ · Mi∇φi = β

R
(φi − φe) and ∇ · Me∇φe = −β

R
(φi − φe) − Is

(1)

where i = intracellular, e = extracellular, Is is a sub-threshold external

current source per unit volume applied in the extracellular space, φj

( j = i, e) is the potential, β is the surface to volume ratio of the cells

and R is the specific membrane resistance. The tensors Mj ( j = i, e)

take into account the anisotropic nature of the tissue, which comes

not only from the varying conductivity values, but also from the fibre

rotation within the cardiac tissue [27]. Hence, for a rectangular block

of tissue, the Mj are of the form

M j(x, y, z) =

⎛
⎝

(gjl − gjt )c2 + gjt (gjl − gjt )cs 0

(gjl − gjt )cs (gjl − gjt )s2 + gjt 0

0 0 gjn

⎞
⎠

(2)

where j = i, e, c = cos αz and s = sin αz and α is the fibre rotation

angle.

The potential distribution in the blood, φb, is governed by

Laplace’s equation

∇2φb = 0. (3)

The boundary conditions used to solve the model follow from

the assumptions that the epicardium is insulated, there is continu-

ity of potential and current at the interface between the tissue and

the blood, and the intracellular space is insulated by the extracellular

space,

∂φe

∂z
= ∂φi

∂z
= 0 at z = 0 (4)

and

φe = φb, gb

∂φb

∂z
= gen

∂φe

∂z
,

∂φi

∂z
= 0 at z = 1 (5)

where gb is the conductivity of blood and φb is the potential in the

blood. Also, φb → 0 as z → ∞, since it is assumed that the blood mass

is infinite in the positive z direction. Assuming that the boundaries of

the domain are insulated, gives the final boundary conditions at the

x and y boundaries

Me∇φe · n = 0, Mi∇φi · n = 0 and ∇φb · n = 0, (6)

where n is the outward pointing normal from the boundary.

The model, Eqs. (1)–(3), subject to boundary conditions (4)–(6),

is solved by expanding each of the potentials φe and φi as a Fourier

series, where for j = i, e

φ j(x, y, z)=
∞∑

r=0

∞∑
s=0

C j
rs(z) cos(sπy) cos(rπx)

+Dj
rs(z) sin(sπy) cos(rπx)+E j

rs(z) cos(sπy) sin(rπx)

+F j
rs(z) sin(sπy) sin(rπx) (7)
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