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a b s t r a c t

Understanding the dynamics of stem cell lineages is of central importance both for healthy and cancerous

tissues. We study stochastic population dynamics of stem cells and differentiated cells, where cell decisions,

such as proliferation vs. differentiation decisions, or division and death decisions, are under regulation from

surrounding cells. The goal is to understand how different types of control mechanisms affect the means and

variances of cell numbers. We use the assumption of weak dependencies of the regulatory functions (the

controls) on the cell populations near the equilibrium to formulate moment equations. We then study three

different methods of closure, showing that they all lead to the same results for the highest order terms in the

expressions for the moments. We derive simple explicit expressions for the means and the variances of stem

cell and differentiated cell numbers. It turns out that the variance is expressed as an algebraic function of par-

tial derivatives of the controls with respect to the population sizes at the equilibrium. We demonstrate that

these findings are consistent with the results previously obtained in the context of particular systems, and

also present two novel examples with negative and positive control of division and differentiation decisions.

This methodology is formulated without any specific assumptions on the functional form of the controls, and

thus can be used for any biological system.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Tissue turnover dynamics, especially in the context of stem cell

regulation, have attracted the attention of many researchers. Cell

populations are assumed to possess a hierarchical structure, where

different classes of cells can interact in intricate ways. In the simplest

case, there are stem cells capable of self-renewing and regenerating

the tissue, and differentiated cells which can perform the tissue’s spe-

cific functions.

Differentiated cells are subject to relatively frequent cell death

and need to be replenished by stem cell divisions. These divisions can

be of several types. Specifically, a stem cell can differentiate by divid-

ing into two differentiated cells, or it can proliferate, by dividing into

two stem cells. Differentiation/proliferation decisions are thought to

be under regulation coming from surrounding cells in the tissue. Vari-

ous control loops help maintain a roughly constant overall tissue size,

and keep variations in the numbers of stem and differentiated cells to

a minimum.

There is significant theoretical literature exploring various aspects

of stem cell dynamics. Conceptual theoretical issues for the studies

of stem cells have been identified in [1–3]. Discrete and continu-

ous models relevant for carcinogenesis have been studied [4–15].
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Evolutionary modeling of stem cells in systems other than cancer

was introduced in [16]. Modeling of stem cells in the hematopoietic

system was proposed by several authors [17–21]. In these and other

papers, both deterministic and stochastic models have been intro-

duced and studied (see a great review of many modeling approaches

provided in [22]). The deterministic (ODE) approach provides useful

analytical insights into the dynamics and long-term behavior of cell

lineages. Two- and multi-compartment models with several types of

the regulation function have been studied in [23,24], where the au-

thors discuss important conceptual issues about stem cell regulation

from the engineering prospective. A systematic linear stability anal-

ysis of two- and three-compartment models with regulation of self-

renewal fractions or regulation of proliferation rates was performed

in [25]. Another type of regulation was studied in two-compartment

models by [26]. Analysis of the structure of stationary solutions in

the n-compartment version of the model was presented in [27].

The stochastic approach allows to quantify the role of fluctuations

in the behavior of the system of interest [28–31]. Apart from several

exceptions [32,33], most of the literature is devoted to numerical ex-

plorations of stochastic stem cell systems. Recently, we performed

analytical studies of two stochastic stem cell systems involving non-

linear control [34,35] and found how the strength of control deter-

mines the amount of stochastic fluctuations in the numbers of stem

and differentiated cells. This was done for several particular types of

control functions. Unfortunately, the methods used in those papers

cannot be extended to study other types of control loops.
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In the present paper we develop a general, analytical method-

ology for studying the behavior of hierarchical, two-compartment

(stem and differentiated cells) systems with nonlinear control. We as-

sume that division, death, and differentiation/proliferation decisions

are given by some (unspecified) functions of the numbers of stem

and differentiated cells, and provide tools to calculate the moments

of the cell numbers, and importantly, the means and the variances of

the numbers of cells.

It turns out that under some general assumptions, the amount of

variation in the system is a function of the local behavior of the con-

trol functions near the equilibrium. For example, in the simplest case

of the constant total population systems, the variance in the number

of stem cells is inversely proportional to the derivative of the control

function with respect to the number of stem cells, evaluated at the

equilibrium. For non-constant populations, we develop similarly gen-

eral methods and provide explicit formulas approximating cell num-

ber means and variances.

The method developed here is algorithmically different, and sim-

pler, than the linear noise approximation [36]. We studied the con-

nection between the two methods and proved that they give the same

result to all orders of accuracy. Therefore, our method could be con-

sidered a short-cut compared with the Van Kampen power series ex-

pansion. We developed a computer program (written for Mathemat-

ica and presented in a supplement) which allows to apply our method

to any system of stem and differentiated cells with given control func-

tions. In other words, if we assign the rates of divisions, differentia-

tion/proliferation, and death to be some functions of the numbers of

stem and differentiated cells, our tools allow to calculate analytically

the means and the variances of the stem and differentiated cell num-

bers as functions of the system parameters, and to study stability and

robustness of the system.

The rest of this paper is organized as follows. In Section 2 we

discuss systems with constant total populations, where only differ-

entiation/proliferation decisions are under nonlinear regulation. In

Section 3 we generalize this methodology to non-constant popula-

tions, where three types of processes (divisions, deaths, and differ-

entiation/proliferation decisions) are under nonlinear regulation. In

Section 4, the results are illustrated by using previously solved regu-

lation problems as well as two novel examples. In the first example,

both division and differentiation decisions are under negative con-

trol from the population sizes. In the second example, divisions are

negatively regulated while differentiation decisions are under a pos-

itive control loop. Section 5 compares and contrasts our new method

with the power series expansion method of Van Kampen. Discussion

is provided in Section 6.

2. Modeling constant total cell populations

In the first set of models we will assume that the population con-

sists of I stem cells and J differentiated cells, and that the total pop-

ulation size remains constant, I + J = N. This corresponds to a gen-

eralization of the well-known Moran process [37] in the presence of

two sub-populations of different properties. In the classical Moran

process, each update consists of a division event followed by a death

event. All cells have an equal probability to die, and any cell has a

chance to divide. A division event is a replacement of the dividing

parent cell with two cells, which in the absence of mutations are both

identical to the parent cell.

In the processes considered here, only differentiated cells die

(with equal probabilities), and only stem cells divide (also with equal

probabilities), see Fig. 1. Moreover, there are two types of stem cell

divisions. A proliferation event results in two daughter cells which are

both stem cells. A differentiation event leads to the creation of two dif-

ferentiated cells. The probability of differentiation, p, is assumed to be

under some regulatory loops from the stem and/or differentiated cell

Fig. 1. A schematic showing one step of the update for the constant total popula-

tion model. Circles represent stem cells (“S”) and differentiated cells (“D”). Following a

death of a randomly chosen differentiated cells, one of the stem cells is chosen for divi-

sion. With probability pI (where I is the current number of stem cells in the system) it

will differentiate, that is, divide into two daughter differentiated cells. With probability

1 − pI, it will proliferate, that is, divide into two stem cells.

populations. Since J = N − I, we can simply say that p = pI, a function

of the number of stem cells, I.

The above model gives rise to a 1D Markov process with Prob(I →
I − 1) = pI and Prob(I → I + 1) = 1 − pI . Denoting by ϕI(t) the prob-

ability to find the system at state I at time t, we can write down the

following Kolmogorov forward equation:

ϕ̇I = ϕI−1(1 − pI−1) + ϕI+1 pI+1 − ϕI. (1)

Depending on the functional form of the differentiation probabil-

ity pI, the system can exhibit different types of behavior, from os-

cillating around an equilibrium, to an unstable behavior resulting in

extinction/overflow.

2.1. Previous results for specific cases

In [34], several types of the differentiation probability pI have

been studied.

• No control. It was shown that for pI = p = const, the system

rapidly drifts to one of the two extinction states: either the I = 0

state with no stem cells, or the I = N state with no differentiated

cells. This case corresponds to the absence of stem cell regulation.
• A hyperbolic law. In this case, we assume the following functional

dependence:

pI = β

1 − hI
, (2)

where β and h are parameters. The magnitude of h defines the

degree of control, and the case h = 0 corresponds to the constant

probability model. We obtained the following results for the mean

and the variance of the stem cell numbers in this case:

E[I] = 1 − 2β

h
− 1

2
, Var[I] = β

h
+ 1

4
. (3)

• A Hill-type law. Consider the following functional form of differ-

entiation probability:

pI = Iα

kα + Iα
, (4)

with 0 < k < N and α ≥ 0. Here, α = 0 is the constant-p model,

and α → ∞ corresponds to the Heaviside function. If we assume

that k � 1, then the following approximations for the mean and

the variance of the stem cell number have been obtained:

E[I] = k + 1

2α
+ O(1/k), Var[I] = k

α
+ 2α − 1

4α2
+ O(1/k).

(5)
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