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a b s t r a c t

Biological systems present particular challengers to model for the purposes of formulating predictions of

generating biological insight. These systems are typically multi-scale, complex, and empirical observations

are often sparse and subject to variability and uncertainty. This manuscript will review some of these specific

challenges and introduce current methods used by modelers to construct meaningful solutions, in the context

of preserving biological relevance. Opportunities to expand these methods are also discussed.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Biological systems at all levels of organizations are modeled for

the purposes of gaining insight, testing hypotheses, or formulating

predictions on future states of these systems following their nor-

mal evolution, or consequent to some outside perturbation or exper-

iment. Depending on the intent of the modeler, models are formu-

lated with varying levels of complexity. Simulation refers to applying

a model in order to extract predictions. Depending on the nature of

the model, these predictions are associated with varying levels of

certainty, which may be quantifiable with appropriate methodology.

This is the forward problem [1]. Before a model can be used for offer-

ing predictions, it must be appropriately parameterized. The activity

of parameterizing a model from empirical observations, which may

involve various tasks depending on the precise mathematical formu-

lation of this model, constitutes the inverse problem [2,3]. Depending

on the particular biological system and its precise model represen-

tation, solving the inverse problem ranges from manageable, to im-

practical, to impossible. Solutions to the inverse problems present

significant challenges for all but the most simple of biological sys-

tems. While most of the effort in systems biology has focused on the

interface of complex biological networks and high-throughput data

[4,5], biological problems at other scales of description and trian-

gulated by much sparser empirical datasets have received relatively

little attention [1].
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2. Posing the problem

2.1. Mathematical formulation

This manuscript will discuss solutions of biological problems that

are mathematically represented by systems of difference or differen-

tial equations [6], or even more generally by sets of rules defining in-

teractions such as present in rule-based or agent-based models [7,8].

With little loss of generality, let us assume that a biological system is

modeled using a system of ordinary differential equations:

Ẋ = f (X, p, t)+ U(X, t)+ N(t)
O = g(X)

where Ẋ is the first time derivative a vector of model variables, O is a

vector of observables on the biological system being modeled, U(X, t)
a vector of external controls or influences on the system, p is a vec-

tor of parameters, N(t) are noise terms, the function f embodies the

biology governing the interaction between the different variables on

the system, and g is a map between system observables and model

variables. For the model to be usable for prediction, additional data,

typically in the form of a vector of initial conditions Xt=0, turning

the forward problem into an initial value problem, need to be spec-

ified. In addition, a number of observations are made on the system

across several experimental conditions E which systematically or ran-

domly vary initial conditions, boundary conditions, or manipulate the

temporal evolution of the system in some other way. In its simplest

form, solving the inverse problem therefore involves the definition

of a function �(O, p, f, U) quantifying the error between model pre-

dictions and observations across all experiments, and identifying p,

but occasionally also f or U that will minimize this function, resulting

in a model that best matches all available data across experiments.
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The careful construction of � and how its various components are

combined and weighted when multiple objectives are pursued is of

paramount importance in biological systems, involving layers of con-

siderations beyond identifying local minima of the error.

2.2. Sources of uncertainty

Any quantitative scientist collaborating with biological or social

scientists is awed by the character of the empirical data derived

from apparently perfectly reproducible experiments. Biological sys-

tems are complex and noisy. Noise may appear to govern a lot of

the observed dynamics, either because of actual random dynamics of

the data generating processes or because a significant portion of what

drives the dynamical evolution of the system is either not represented

or implicit in the model. In addition, there is generally an observability

problem, that is, the knowledge obtained from the available observa-

tion insufficiently constrains the inverse problem of identifying states

and/or parameters. Sources of variability in the data can be grouped

under three major categories: (1) the experiment is difficult to repro-

duce because a number of known factors cannot be easily controlled,

(2) the measurement is difficult to reproduce because instruments

and tests have intrinsic variability, and (3) there is residual variability

stemming from a large number of unknown and possibly uncontrol-

lable factors, including the highly variable makeup of biological or-

ganisms, which can oftentimes turn out to be the dominant source of

variability overall. There are also additional sources of variability that

could be present in longitudinal data. Small animal experiments often

require animal sacrifice at preset time points since the measurements

cannot be performed while leaving the animal intact, so a given an-

imal only provides data at a single time point. Many experiments in

live animals may also result in death, caused by an experimental ma-

nipulation or not. Data from late time points are therefore populated

by animals that survived to that time point, and data may therefore

be biased in favor of animals naturally more resistant. A separate

source of uncertainty resides in lack of a full understanding of the

exact relationships between observables and model variables. In bi-

ological systems, an identity relationship is often assumed, thereby

further simplifying biology. Data sparsity is also a common source of

uncertainty for the modelers. It is therefore centrally important that

experimental data be obtained over the dynamic range of the biolog-

ical response. This problem is particularly pernicious when dealing

with observational studies or clinical data. An example of this is re-

lated to efforts to model the molecular response to severe infections

in humans: most humans with severe infections are first encountered

well into the disease process, and at different, and unknown, times

along that process [9].

Some of these shortcomings in data can be alleviated with careful

experimental design or more sophisticated statistical treatment. Yet

most cannot be addressed effectively, especially in situations where

the experimental and modeling groups do not work in close and bi-

lateral collaboration, particularly when data has already been col-

lected. Any attempt at solving inverse problems must address these

shortcomings in such a way as to map data uncertainty into model

uncertainty with minimal bias.

3. A satisfactory solution to the inverse problem

A more precise formulation of the inverse problem in the context

of biological systems may thus be more appropriately stated along the

following lines: given the data at hand and its limitation, and given

prior knowledge of the system one is trying to model, what is the

least biased model representation of this system that can be offered.

Whether this representation is useful in the broader sense remains to

be investigated and will generally depend on the nature of the mecha-

nistic insight or predictions being sought. A vast class of models offers

a linear representation of biological systems. Given sufficient data, the

optimization problems arising from the corresponding inverse prob-

lems are convex, that is admitting a single, global, optimal parame-

terization . One must realize that such representations are in fact a

choice made by the modeler and that the actual system might only be

approximately linear under very restricted biological operating con-

ditions, a specific instance of the general fact that any mathematical

representation of reality will involve simplifying assumptions. Such

local linearization, performed explicitly or implicitly in the modeling

process, is a useful tool as long as it is recognized that as soon as the

system is perturbed away from the validity of this approximation, the

model may lose any potential validity and thus usefulness, which will

almost always be the case when studying biological systems under

stress caused by environmental alterations, disease, etc.

More broadly, the modeler may also mandate or make the implicit

assumption that, despite the existence of a large number of local op-

tima, there exists among them a best one that nature has somehow

adopted. An example of such a situation is instantiated in the protein

folding problem where generally, the best local optimum (lowest en-

ergy) is promoted to global optimum within a range of conformations

of interest and predicted to be the three-dimensional conformation

of a sequence of amino acids. In this particular situation, folding is

a process which is itself highly optimized requiring the presence of

chaperon proteins at different steps of a growing primary sequence

of amino-acids and thus the final product is “guided” to a local en-

ergy minimum. Therefore, approaching folding as a local optimization

problem is sensible. Despite the knowledge of the existence of a large

number of other minima, they are not favored by nature where func-

tion dictates structure. Such a conformation, although stable upon

small perturbations representative of routine biological function, is

not upon larger, biologically irrelevant perturbations such as heating

beyond temperatures compatible with life.

Therefore, although methods for estimating convex or “almost”

convex systems are plentiful, well understood and described and im-

plemented in major software packages, they are of limited use and

interest in estimating complex biological systems. Rather, we are in-

terested in a class of problems where there are many, potentially in-

finitely many, solutions to the inverse problem, that is ill-posed prob-

lems, and where there is no clear biological indication as to which of

those solutions are biologically implausible. Techniques have been de-

veloped to construct ensemble models, where each member of the en-

semble is a parameter vector for a given a model structure [1,10–13].

Ensemble modeling, although computationally demanding, repre-

sents the most satisfactory solution to ill-posed inverse problems

to date [14]. This suite of methods is undergoing active development

in the context of complex biological systems and presents a number

of open problems still to be addressed effectively (see below).

4. Parameter uncertainty and model identification

There exist good reviews on the topic of model identifiability [15].

Model identifiability is generally defined along an axis ranging from

formal, or a priori global identifiability, to practical identifiability.

A priori global identifiability or structural identifiability stipulates

whether, given a model structure and a set of parameters and ini-

tial conditions, model parameters can always be uniquely identi-

fied assuming sufficient data. Several formal methods exist to re-

solve global and local structural identifiability, each having strength

and weaknesses depending on the mathematical structure of the

problem [16]. Generally, the more complex the system (e.g. pres-

ence of Hill or Michaelis–Menten kinetic terms) and the higher the

number of parameters compared to observables, the more diffi-

cult it will be to resolve structural identifiability of a system. For-

mal methods based on differential algebra [17] (e.g.) have become

popular recently. Software implementing differential algebra [18,19]

(http://www.dei.unipd.it/~pia/) , generating series [20] , or a com-

bination of approaches [21] have been developed to investigate a
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