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a b s t r a c t

In the system of intraguild predation (IGP) we are concerned with, species that are in a predator–prey

relationship, also compete for shared resources (space or food). While several models have been established

to characterize IGP, mechanisms by which IG prey and IG predator can coexist in IGP systems with spatial

competition, have not been shown. This paper considers an IGP model, which is derived from reactions

on lattice and has a form similar to that of Lotka–Volterra equations. Dynamics of the model demonstrate

properties of IGP and mechanisms by which the IGP leads to coexistence of species and occurrence of

alternative states. Intermediate predation is shown to lead to persistence of the predator, while extremely

big predation can lead to extinction of one/both species and extremely small predation can lead to extinction of

the predator. Numerical computations confirm and extend our results. While empirical observations typically

exhibit coexistence of IG predator and IG prey, theoretical analysis in this work demonstrates exact conditions

under which this coexistence can occur.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Intraguild predation (IGP) occurs between species in the same

community which utilize similar resources (space or food), and thus

there is competition between them. IGP is classified as asymmetrical

or symmetrical. In asymmetrical IGP, one species consistently preys

upon the other. But in symmetrical IGP, either species can prey upon

the other. In this work, we are concerned with asymmetrical IGP.

For convenience, we call it as IGP in the following discussions. IGP

has been widely observed in both terrestrial and aquatic communi-

ties [27]. For examples, there exists IGP between large mammalian

carnivores. Large canines and felines are the mammal groups often

involved in IGP, with larger species such as lions and gray wolves

preying upon smaller species such as foxes and lynx [14]. Coyotes

function as predators on gray foxes and bobcats in North America

[3]. Since empirical observations typically exhibit coexistence of IG

predator and IG prey, an interesting question has been focused on

that under which conditions the coexistence can occur [16,17].

Several models have been established to characterize IGP. Holt

and Polis [5] formed a three-specie model of IGP with Holling Type I

functional response, in which two species that have a predator–prey

relationship, also compete for a shared resource. They also formed a

two-species system, which is an extension of the exploitative com-

petition model introduced by Schoener [19,20]. Theoretical analysis

demonstrated a general criterion for coexistence in IGP that IG prey
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should be superior at exploitive competition for the shared resource,

whereas the IG predator should gain significantly from the IG prey.

Local stability analysis and numerical computations also showed that

at intermediate levels of environmental productivity, there exist al-

ternative states (either IG prey dominance or IG predator dominance,

or either the IG predator dominance or coexistence). Ruggieri and

Schreiber [18] considered the Schoener–Polis–Holt model, in which

IG prey and IG predator compete for resources (food). A global anal-

ysis exhibits six dynamics of the model. Okuyama [28] studied IGP

in a spatial setting by establishing a lattice IGP model. For homo-

geneous resources, pair approximation was used to study the ef-

fect of spatially structured species interactions. The qualitative re-

sults of the pair approximation model predicted coexistence of the

species over a wider range of parameters than the non-spatial model.

Takimoto et al. [22,23] analyzed models of IGP with three and four

dimensions, and demonstrated complex but systematic sequences

of alternative states along a productivity gradient, where sufficient

conditions that determine which sequences to occur, are clarified.

Takimoto et al. [24] presented a Levins-type patch occupancy model

of IGP. Theoretical analysis exhibited conditions for feasibility of each

equilibrium, while numerical computations displayed both equilib-

rium stability and food-chain length with different strength of lo-

cal IGP. The model showed that ecosystem size can promote coexis-

tence and increase food-chain length even when local IGP is strong,

which is consistent with empirical patterns. Kang and Wedekin [7]

formed a model of IGP with Holling Type III functional response.

Sufficient conditions are provided for persistence and extinction of

species in all possible situations and multiple attractors and peri-

odic oscillations are exhibited. For other relevant work, we refer to

http://dx.doi.org/10.1016/j.mbs.2014.11.001

0025-5564/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.mbs.2014.11.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2014.11.001&domain=pdf
mailto:wuhong@mail.sysu.edu.cn
http://dx.doi.org/10.1016/j.mbs.2014.11.001


2 Y. Wang, H. Wu / Mathematical Biosciences 259 (2015) 1–11

Refs. [1–3,10,13]. As far as we know, mechanisms by which IG prey

and IG predator can coexist in IGP models with spatial competition,

have not been shown. Therefore, forming an appropriate model of

IGP with spatial competition and demonstrating its properties are

necessary.

In this work, we use a lattice gas model to describe IGP. The lat-

tice gas model is individual-based and is different from the classical

“lattice model”. Since the lattice model characterizes local interac-

tions occurring between adjacent sites on a lattice, the lattice gas

model describes interactions between any pair of lattice sites and the

interactions occur randomly and independently [21]. While dynam-

ics of lattice models cannot be described by mathematical equations,

dynamics of lattice gas models are usually depicted by differential

equations when the lattice is sufficiently large, which are called the

mean-field theory of lattice model. These equations have been widely

applied in characterizing competition, predation and mutualism in bi-

ology for years. For example, a lattice version of predator–prey model

was presented by Nakagiri et al. [11] and dynamics of the model ex-

hibit conditions under which the species can coexist and under which

the predator would be excluded by competition of the prey. A typical

lattice version of competition model has also been studied by several

authors [8,9,12]. In a recent study, a lattice version of mutualism-

competition model was introduced by Iwata et al. [6]. In the two-

species system, spatial competition is considered and the space where

the two species live, is assumed to be divided into many sites and is

regarded as a lattice. Since each site can be occupied by one individual

of the populations, the species are competitive for sites on the lattice.

The species are also mutualistic since each of them produces resources

for the other. The benefit of the mutualism is represented by the in-

creased reproduction rate of both species populations. Dynamics of

the mixed mutualism-competition model demonstrate that when the

mutualistic effects vary, interaction outcomes between the species

can change among mutualism, parasitism and competition in a

smooth fashion.

Inspired by the work of Nakagiri et al. [11] and Iwata et al. [6], we

apply a lattice version of predation-competition model to describe

IGP. The model focuses on spatial competition. The space occupied by

the population is regarded as a lattice and each site can be occupied

by one individual of the species. Thus, the species are competitive for

sites on the lattice. The species are also involved in a predator–prey

relationship since predation can occur as a predator meets the prey.

Similar to Ref. [6], the benefit of the predation is represented by the

increased reproduction rate of the predator. Dynamics of the model

demonstrate properties of IGP and mechanisms by which the IGP

leads to persistence/extinction of species: (i) In IGP where IG preda-

tor cannot survive in the absence of IG prey, when the efficiency of

predator in converting its consumption into fitness is high, the preda-

tor can persist. When the efficiency is intermediate, the predator can

persist if it has a high initial density; if the initial density is low, the

predator goes to extinction. When the efficiency is low, the predator

will go to extinction. (ii) In IGP where IG predator can survive in the

absence of IG prey, when the efficiency of predator is high, the IGP

can enhance population density of predator. When the efficiency is

low, the predator can persist if its population density is large. Other-

wise, the predator will be driven into extinction by its prey through

competition. (iii) Intermediate predation can lead to persistence of

the predator, while extremely big predation can lead to extinction of

one/both species and extremely small predation can lead to extinction

of the predator. Saddle-node bifurcation and pitchfork bifurcation in

the model are demonstrated, while numerical computations confirm

and extend our results.

The paper is organized as follows. The model is described in

Section 2. Sections 3 and 4 show dynamics of the model. Discussion

is in Section 5.

2. Model

In this section, we form the lattice gas model of IGP and exhibit

boundedness of solutions and nonexistence of periodic orbit of the

model.

Let X and Y represent the prey and predator, respectively. A site

on a lattice is labeled by X (or Y) if it is occupied by an individual

of species X (or Y). When a site is empty, it is labeled by O. On the

lattice, any pair of sites can interact randomly and independently.

When there is only one species on the lattice, the interactions can be

described by contact process [4]. For example, in the system of species

X, if a site is occupied by X, then it will become O in a mortality rate

mX . If sites X and O interact, then the site O will become X in a birth

rate BX . A similar discussion can be given for the one-species system

of Y . Moreover, when the prey X and predator Y emerge on the same

lattice, predation can occur: X would be killed and consumed if it

meets Y , which promotes the growth of Y .

Therefore, reactions on the lattice of species X and Y can be de-

picted as follows:

X → O with mortality rate mX,

Y → O with mortality rate mY ,

X + O → 2X with birth rate BX, (2.1)

Y + O → 2Y with birth rate BY ,

X + Y → O + Y with killing rate k,

where the first and second reactions respectively describe the mortal-

ity processes of species X and Y , while the third and fourth reactions

respectively characterize their birth processes. The fifth reaction rep-

resents the predation of species Y on X, in which species X is killed by

Y and the site occupied by X becomes empty.

When the lattice size is large, reactions of (2.1) are usually de-

scribed by differential equations, which are called lattice models of

mean-field theory [6,26]:

dx

dt
= −mXx + BXx(1 − x − y)− kxy,

dy

dt
= −mY y + BY y(1 − x − y), (2.2)

where x and y represent fractions of sites occupied by species X and Y ,

respectively. The factor (1 − x − y) is the fraction of empty sites. Since

one site can be occupied by one individual, x and y represent the sizes

of population densities of species X and Y . For convenience, x and

y are called densities of the two species. The first and second terms

in the righthand side of each equation come from the mortality and

birth processes, while the third term in the first equation comes from

the predation process. Thus, the lattice gas model (2.2) has the same

form as Lotka–Volterra equations. Parameters mX and mY respectively

represent mortality rates of species X and Y , and the birth rates are

defined by

BX = rX, BY = rY + ēkx,

where rX (rY ) denotes the birth rate of species X (Y) in the absence

of the other. Parameter k represents the killing rate of species Y on

X, while ē denotes the efficiency of Y in converting the consumption

into fitness. In the following discussion, we denote

e = ēk.

In system (2.2), we assume rY ≥ 0 and all other parameters are

positive. We consider solutions (x(t), y(t)) of (2.2) with initial values

x(0) > 0, y(0) > 0. Thus we have x(t) > 0, y(t) > 0 as t > 0. When rX ≤
mX , we have dx/dt < 0 by the first equation of (2.2). Then species X

goes to extinction and system (2.2) becomes a one-species system
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