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a b s t r a c t

Hybrid evolution and horizontal gene transfer (HGT) are processes where evolutionary relationships may

more accurately be described by a reticulated network than by a tree. In such a network, there will often be

several paths between any two extant species, reflecting the possible pathways that genetic material may

have been passed down from a common ancestor to these species. These paths will typically have different

lengths but an ‘average distance’ can still be calculated between any two taxa. In this article, we ask whether

this average distance is able to distinguish reticulate evolution from pure tree-like evolution. We consider

two types of reticulation networks: hybridisation networks and HGT networks. For the former, we establish a

general result which shows that average distances between extant taxa can appear tree-like, but only under

a single hybridisation event near the root; in all other cases, the two forms of evolution can be distinguished

by average distances. For HGT networks, we demonstrate some analogous but more intricate results.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Evolutionary relationships between present-day taxa (species,

genera etc.) are usually represented by a phylogenetic tree, which

shows a branching pattern of speciation from some ancestral taxon

to the taxa we observe today [1]. However, reticulate evolution is

known to complicate this simple ‘tree model’ due to processes such

as the formation of hybrid species [2], and other mechanisms where

genetic material is exchanged between species (such as horizontal

gene transfer (HGT)) or within a species (recombination, a process

we do not consider further in this paper). Consequently, phyloge-

netic networks that allow ‘vertical’ branching through time as well

as ‘horizontal’ reticulation events have increasingly been recognised

as providing a more complete picture of much of the evolutionary

history of life [3–5].

This transition has brought with it a number of mathematical and

computational problems—in particular, how to reconstruct and anal-

yse such networks, and how to distinguish different types of reticula-

tion from tree-like evolution [6,7]. In this note we consider one aspect

of the latter topic, namely the question of whether or not, if we knew

the average evolutionary distance between each pair of species, we

could determine whether the species network could have been a tree,

or whether some more complicated reticulate history is required.
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In a phylogenetic tree, the evolutionary distance between two

present-day species is simply the path length from each species to

the other via its most recent common ancestor (here, ‘evolutionary

distance’ typically refers to the actual or expected amount of genetic

change). However, for networks, there may be many paths linking

two present-day species, and the evolutionary distance will be some

average of these path lengths. Nevertheless, it is conceivable that in

some cases, these distances might still appear to fit a tree exactly. We

explore this question for two classes of networks: those relevant to

hybrid evolution; and those relevant to HGT. Both are special cases of

a more general description of (binary) ‘reticulation’ networks, which

we now define.

1.1. Definitions: reticulation networks

Following Ref. [8], a reticulation network N on a finite set X is a

rooted acyclic digraph (V, A) with the following properties:

(i) the root vertex has in-degree 0 and out-degree 2;

(ii) X is the set of vertices with out-degree 0 and in-degree 1

(‘leaves’);

(iii) all remaining vertices are interior vertices, and each such vertex

either has in-degree 1 and out-degree 2 (a tree vertex) or in-

degree 2 and out-degree 1 (a reticulation vertex);

(iv) the arc set A of N is the disjoint union of two subsets, the set

of ‘reticulation arcs’ AR and the set of ‘tree arcs’ AT ; moreover

each reticulation arc ends at a reticulation vertex, and each

reticulation vertex has at least one incoming reticulation arc;
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Fig. 1. (i) A hybridisation network on {a, b, c, d, e} (usually extant species); (ii) an HGT network on {a, b, c, d}; and (iii) the tree TN obtained from the HGT network N in (ii) by

deleting all reticulation arcs. Reticulate arcs in (i) and (ii) are drawn as arrows; in each case the reticulate vertices are at the endpoints of the reticulate arcs. Note that (i) has four

reticulation arcs and two reticulation vertices, while (ii) has five reticulation arcs and five reticulation vertices.

(v) every interior vertex has at least one outgoing tree arc; and

(vi) there is a function t : V → R so that (a) if (u, v) is a tree arc then

t(u) < t(v), and (b) if (u, v) is a reticulation arc, then t(u) = t(v).

Condition (vi) embodies the biological requirement that the net-

work has a temporal representation that reflects the order of speci-

ation events, and for which reticulation events involve two species

that co-exist at some point in time.

In applications, X typically denotes a set of extant (present day)

species. Two types of reticulation networks are particularly relevant

in evolutionary biology (for different reasons, as we explain shortly)

and these will be the main classes we will consider in this paper.

The distinction is in the pair of arcs ending at a reticulation vertex in

property (iii). Namely,

• in a hybridisation network, both arcs ending in a reticulation vertex

are reticulation arcs, and
• in a horizontal gene transfer network, exactly one of the arcs ending

in a reticulation vertex is a reticulation arc.

A simple example of each type is shown in Fig. 1.

Hybridisation networks model settings where a new species arises

from members of two lineages, a process that occurs in plants, fish,

and some animals [2,9], while HGT models the situation where a gene

(or genes) is transferred from one species to another (a process that

is common in bacteria) [10].

2. Reticulation networks and average distances

2.1. Basic properties of reticulation networks

Firstly, observe that a reticulation network N on X has no reticu-

lation vertices if and only if N is a rooted binary phylogenetic X-tree

(as defined, for example, in Ref. [11]).

Moreover, any hybridisation network is necessarily a tree-child

network; that is, from any interior vertex in N, there is a path to a

leaf that avoids any reticulation vertex. Tree-child networks have a

number of desirable combinatorial and computational properties (see

e.g. Refs. [12,13]).

Hybridisation networks have bounded size once n = |X| is speci-

fied, since such a network can have at most n − 2 reticulation vertices

[14]. To see this, note that in any digraph, the sum of the out-degrees

equals the sum of the in-degrees so we obtain:

2 + 2t + r =
∑

v∈V

degout(v) =
∑

v∈V

degin(v) = n + t + 2r, (1)

where t and r refer to the number of tree vertices and hybridisa-

tion vertices, respectively. Note that each hybridisation vertex corre-

sponds to two parent tree vertices, and hence t ≥ 2r in a hybridisation

network. Eq. (1) gives n = t + 2 − r, and using t ≥ 2r we obtain:

r ≤ n − 2. (2)

A consequence of this bound is that, up to isomorphism, there

are only finitely many hybridisation networks for any given n (the

enumeration of hybridisation networks has recently been investi-

gated by McDiarmid et al. [14]).

By contrast, an HGT network with a given leaf set X can have

arbitrarily many reticulation vertices, and so there are infinitely many

HGT networks for a given X. However, an HGT network N has a useful

property that is absent in a hybridisation network: an HGT network

always has an associated canonical rooted binary phylogenetic X-tree

T that is obtained from N by deleting all the reticulation arcs (and

suppressing any resulting vertices that have both in-degree 1 and

out-degree 1). We denote this tree with the notation TN (an example

is shown in Fig. 1).

Given any reticulation network N on X, suppose that for each retic-

ulation vertex, we delete exactly one of the in-coming arcs. The re-

sulting graph is a rooted tree with leaf set X and a root that coincides

with the root of N. Moreover, if we suppress any resulting vertices

that have both in-degree 1 and out-degree 1 we obtain a rooted bi-

nary phylogenetic X-tree, T. We say that T is displayed by N and we let

T (N)denote the set of all the (at most) 2r such trees that are displayed

by N.

2.2. Tree metrics

Consider any unrooted phylogenetic X-tree T = (V, E) together

with a weight function w : E → R>0 that assigns strictly positive

weights to each edge of the tree. Then (T, w) induces a distance func-

tion on X as follows: For each pair of leaves x, y on a tree T , the tree

distance between them is defined as the sum of the weights of the

edges that lie on the (unique) path in T connecting x and y. That is:

d(T,w)(x, y) :=
∑

e∈P(T;x,y)

w(e),

where if x = y we set d(T,w)(x, y) = 0 (the empty path has length zero).

The resulting function d(T,w) : X × X → R≥0 is a metric on X.

A metric on X that can be represented in this way on some phyloge-

netic X-tree is said to be a tree metric. This holds if and only if the metric

satisfies the ‘four-point condition’. This states that for any four (not

necessarily distinct) points u, v, w, y from X, two of the three sums

d(u, v)+ d(w, y); d(u, w)+ d(v, y); d(u, y)+ d(v, w) are equal, and are

greater than or equal to the other one. This classic characterisation

of tree metrics dates back to the 1960s (for more recent treatments,

see Refs. [11,15]). Moreover, if d is a tree metric on X, then d can be

written d = d(T,w) for precisely one choice of the pair (T, w), where T is

a phylogenetic X-tree, and w a strictly positive edge weight function.

In the case where T is binary, we will say that d is a binary tree metric.

2.3. Average distances on networks

A reticulation network can be thought of as a ‘weighted union’ of

the trees displayed by N. We formalise this idea, and extend it to bring

in distances, as follows:

For each vertex v in the set VR of reticulation vertices of N, let R(v)
denote the two arcs that end at v. Suppose we are given a reticulation

network N = (V, A) on X along with:
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