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a b s t r a c t

In this paper, a metapopulation model composed of patches distributed in two spatial scales is proposed
in order to study the stability of synchronous dynamics. Clusters of patches connected by short-range
dispersal are assumed to be formed. Long distance dispersal is responsible to link patches that are in
different clusters. During each time step, we assume that there are three processes involved in the pop-
ulation dynamics: (a) the local dynamics, which consists of reproduction and survival; (b) short-range
dispersal of individuals between the patches of each cluster; and (c) the movement between the clusters.
First we present an analytic criterion for regional synchronization, where the clusters evolve with the
same dynamics. We then discuss the possibility of a full synchronism, where all patches in the network
follow the same time evolution. The existence of such a state is not always ensured, even considering that
all patches have the same local dynamics. It depends on how the individuals are distributed among the
local patches that compose a cluster after long-range dispersal takes place in the regional scale. An
analytic criterion for the stability of synchronized trajectories in this case is obtained.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

A metapopulation is composed of populations that live in frag-
ments called patches and are often connected via dispersal pro-
cesses [20]. An interesting phenomenon related to the dispersal
process is the synchronized dynamics where the population densi-
ties in all patches evolve with the same amplitude and phase [24].
Its importance lies in the fact that synchronized dynamics can
make the whole metapopulation vulnerable to extinction. On the
other hand, if the metapopulation is not synchronized and a local
population is extinct, it can be recolonized by individuals that
migrate from neighboring patches (‘‘rescue effect’’), favoring the
population persistence [2,3]. The synchronization phenomenon is
important from the ecological and epidemiological point of view
[8]. In ecology, synchronization may have a deleterious effect on
population persistence, because it may lead to the impossibility
of a recolonization, and can be dangerous for species that need to
be preserved. In epidemiology, synchronization can be beneficial
in order to control and improve efforts against a disease. In
Thailand [5], time series analyzes of dengue cases between 1984
and 1996 showed a spatial synchrony in the number of dengue
cases between the cities indicating that the increase in number

of cases in a city may be reflected over the entire country. Another
example is the seasonal dynamics of the influenza virus which epi-
demics occur annually with the highest activity occurring during
winter months [38].

Systems of discrete equations are often used to model metapop-
ulations [1,7,13,32,34]. A metapopulation model with patches
linked by migration and subjected to external perturbations was
considered in [1]. Through numerical simulations, it was shown
that chaos can prevent global extinctions when coupling is weak.
In [13] the patches were linked by considering dispersal process
and distance and it was concluded that this asynchrony reduces
the synchronization likelihood. In [7] was established a positive
correlation between the degree of coherence of the oscillations in
each patch and the risk of extinction of the metapopulation. They
also obtained an analytical result for the stability of synchronized
trajectories by considering a model with an arbitrary number of
patches linked by dispersal. An analytical result examining a
special case of density-dependent dispersal was obtained in [34],
concluding that this mechanism reduces the stability of the
synchronous dynamics. These results are based on the calculation
of the transversal Lyapunov number that depends on the local
dynamics of each patch, and a parameter that depends on the
whole migration process. Symmetric and asymmetric dispersion
[6,12,16,18,21], density-dependent dispersion [29,33,34,37]
studies were done in order to show the different trends of
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metapopulation dynamics and its implications on the persistence
and conservation of species.

The dispersal process often involves two modes, short-distance
and long-distance dispersal [30]. Short-distance dispersal refers to
movement to other sites on a local scale usually by the individual’s
own way of transport such as flying or swimming. The long-dis-
tance dispersal occurs in a regional scale and it takes place usually
through passive transport on wind, water flow, birds or artificial
transportation. Examples of long-range dispersal have been re-
ported on insects [22,26,27], and in aquatic invertebrates [11,17].
Long-range dispersal events may be rare but they are crucial to
population spread since it allows recolonization and counteracts
genetic drift and inbreeding in fragmented environments [36]. In
[14] the genetic structure of the medfly Ceratitis capitata in South
Africa was analyzed and molecular approaches were employed to
obtain estimates of the dispersal ability of the Mediterranean fruit
fly at three spatial scales. The results in [14] suggested that the
structure observed in South African medflies maybe the result of
complex interactions at local scales (limited dispersal ability) and
at broad scales (human-mediated and other forms of long-range
dispersal).

In this paper we propose a model of a network of local popula-
tions linked by a dispersal process that takes into account short-
and long-distance movements. The environment is assumed to
be fragmented in such way that clusters of patches connected by
short-range dispersal are formed. We assume that these clusters
are too far away to admit connection by short-range dispersal
and thus, long-range dispersal is responsible for establishing
connections between some patches that are distant apart. We then
describe the synchronization phenomenon. The analysis is done by
linearizing the equations of the model around the synchronized
trajectories and further decomposition of perturbation vectors into
components in the synchronized manifold and other components
that are transversal to it, obtaining conditions to its local asymp-
totic stability. These conditions are obtained from the block
decomposition of the Jacobian Matrix that presents a fundamental
role in the stability analysis of the synchronous manifold [4,28].

In Section 2 we introduce the metapopulation model with
patches distributed in two geographic scales. In Section 3 we
analyze the asymptotic local stability of synchronized trajectories
and obtain a criterion to its stability based on the calculation of
the transversal Lyapunov numbers. In Section 4 we present
numerical simulations considering different distributions of indi-
viduals in the patches that compose a cluster. Final comments
and discussion are done in Section 5.

2. The mathematical model

We consider a network of patches distributed in two spatial
scales. In a local scale, nearby patches are connected by short-range
dispersal forming clusters or conglomerates. We assume that these
clusters are too far away from each other to be linked by short-range
dispersal. Thus, in a regional scale, patches of different clusters are
allowed to be connected by long-range dispersal (see Fig. 1). Fig. 1
is just a schematic representation but it resembles real networks
topologies [15]. In [15] the network topology showing patch con-
glomerates was obtained with data on the grasshopper Stethophyma
grossum distributed in a fragmented agricultural landscape.

2.1. The isolated cluster

We start describing the basic habit unit of our network viewed
in a broad scale, a cluster of patches linked by short-range dis-
persal. If there is no long range dispersal, the clusters are isolated.
This will be a metapopulation in a more classical sense, a collection

of patches linked by short-range dispersal as in [1,7,13]. Assume
that the processes of survival and reproduction which compose
the local dynamics is described by a map f on ½0;1Þ of class C1.
In the absence of dispersal between patches, the time evolution
of the population is given by

xtþ1 ¼ f ðxtÞ; t ¼ 0;1;2; . . . ; ð1Þ

where xt represents the number of individuals at time t. Important
examples of f used in ecology are given in [25,35], and the single
patch model (1) can display rich dynamical behavior including
stable cycles, periodic-doubling cascades and chaos.

We assume that a fraction m leave patch i and disperse to the
neighboring patches. Thus, the density of individuals that leave
patch i is given by mf ðxi

tÞ, where xi
t denote the population density

in patch i at time t, for all i ¼ 1; . . . ; d; t ¼ 0;1; . . .. Moreover, from
the individuals that disperse from the neighboring patches k, a
fraction cik reach patch i. Clearly ckk ¼ 0, and

Pd
k¼1 cki ¼ 1, for all

i ¼ 1; . . . ; d. We now can write the equations describing the
dynamics of the isolated cluster as

xi
tþ1 ¼ ð1�mÞf ðxi

tÞ þ
Xd

k¼1

cikmf ðxk
t Þ: ð2Þ

The first term in Eq. (2) represents the individuals that did not
leave patch i at time t, while the second term is the sum of all con-
tributions of individuals of the neighboring patches.

2.2. A system of linked clusters

The metapopulation model in two spatial scales consist of n
equal clusters, as described in the previous subsection, labelled
as 1;2; . . . ;n, each one containing d equal patches. The total num-
ber of patches in the whole network is nd. Let xli

t the number of
individuals in patch i of cluster l at time t. Let xl

t ¼ ðxl1
t ; x

l2
t ; . . . ; xld

t Þ
the d-dimensional vector representing the distribution of individu-
als among the patches of cluster l. In the absence of long-range
dispersal the dynamics of cluster l is given by xl

tþ1 ¼ fðxl
tÞ, where

f : Rd ! Rd is given by

fðxl
tÞ ¼

ð1�mÞf ðxl1
t Þ þ

Xd

k¼1

c1kmf ðxlk
t Þ

ð1�mÞf ðxl2
t Þ þ

Xd

k¼1

c2kmf ðxlk
t Þ

..

.

ð1�mÞf ðxld
t Þ þ

Xd

k¼1

cdkmf ðxlk
t Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: ð3Þ

Let fðxl
tÞ ¼ ðyl1

t ; y
l2
t ; . . . ; yld

t Þ. Thus after the local dynamics
(within patch dynamics) and short-range dispersal the number of
individuals of patch i of cluster l is yli

t .
We now describe the long distance movement between patches

in different clusters. Let li be the fraction of individuals that leave
patch i in any cluster in a long-range movement to establish in an-
other cluster. Of course 0 6 li 6 1, i ¼ 1; . . . ; d. Thus, the number of
individuals that leave patch i of cluster l at time t is liy

li
t . From

these individuals only a fraction will move to cluster j. This process
is governed by a nonnegative n� n matrix C, satisfying

Pn
j¼1cjl ¼ 1

and cll ¼ 0 for all l ¼ 1; . . . ;n. Thus, the number of organisms that
leave patch i of cluster l and reach cluster j at time t is cjlliy

li
t . Let

patch k of cluster l be the final destination of these migrants. Only
part of them will settle in patch k with proportion wki. This process
of distribution of migrants among the patches of the new cluster is
governed by the d� d matrix W, with entries wki, with 0 6 wki 6 1
for all i; k ¼ 1; . . . ; d. Adding the contribution of all patches in clus-
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