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Atrial fibrillation is a disorganization of the electrical propagation in the atria often initiated by ectopic
beats. This spontaneous activity might be associated with the appearance of sustained oscillations in
some portion of the tissue. Adrenergic stress and specific gene polymorphisms known to promote atrial
fibrillation are notably related to calcium and potassium channel conductances. We performed codimen-
sion-one and two bifurcation analysis along these conductances in an ionic canine atrial myocyte model.
Two Hopf bifurcations were found, related to two distinct mechanisms: (1) a fast calcium gating-driven
oscillator, and (2) a slow concentration-driven oscillator. These two mechanisms interact through a dou-
ble Hopf bifurcation (HH) in a neighborhood of which a torus (Neimark-Sacker) bifurcation leads to
bursting. A complex codimension-two theoretical scenario was identified around HH, through systematic
comparison with the attractors found numerically. The concentration oscillator was further decomposed
to reveal the minimal oscillating subnetwork, in which the Na*/Ca?* exchanger plays a prominent role.
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1. Introduction

Neural and cardiac excitable cells can exhibit a wide range of
oscillatory regimes, from simple sustained oscillations to complex
bursting. Major pathologies and in particular cardiac arrhythmias
are often triggered by abnormal automaticity from some part of
the tissue [1,2].

The most prevalent cardiac arrhythmia in North America is at-
rial fibrillation [3]. It consists of a general disorganization of elec-
trical activity in the atrial tissue. Fibrillation is often initiated by
ectopic focus originating from abnormal automatic activity or
afterdepolarization in cardiac myocytes. In terms of nonlinear
dynamics, afterdepolarization is a transient oscillation while auto-
maticity consists of sustained oscillations. Bursting and other com-
plex spatio-temporal dynamics have also been reported in cultured
myocytes [4].

Increase of membrane Ca?* conductance and decrease of K
membrane current conductance are known to promote oscillations
in ventricular myocyte models [5,6]. Various K* channels may also
be blocked in some genetic polymorphisms leading to afterdepo-
larizations [7,8]. Ca®" conductance is enhanced under adrenergic
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stress [9] and this condition promotes ectopic focus in ventricular
[10] and atrial cell models [11]. Another major mechanism of oscil-
lation in atrial cell is the so-called spontaneous Ca?* release (Sp-
CR) from the sarcoplasmic reticulum (SR) [12]. It has recently been
introduced in two models of human atrial myocytes [11,13,14] but
their respective representations of the sarcoplasmic calcium han-
dling are still debated [11]. Although the Sp-CR mechanism is gain-
ing interest, it is yet not clear if mechanisms involving only
membrane currents and cytoplasmic ion concentrations dynamics
can elicit sustained oscillations in cardiac cells.

Classical cardiac and neural Hodgkin-Huxley type models [15]
do not include dynamics of ion concentrations. Na* and K* dynam-
ics have recently been found to be able to yield bursting in a neural
model [16,17]. Bursting involving slow oscillations of Na* and Ca®*
has also been observed in a ventricular model [18]. While most of
recent ionic cardiac myocyte models incorporate ion concentration
dynamics [19,20], the question of their ability to cause oscillations
and bursting has rarely been addressed.

The purpose of this paper is to investigate where and how oscil-
lations may be elicited in a canine atrial myocyte model lacking the
Sp-CR mechanism. We first perform bifurcations analyses as a
function of the conductance of a Ca?* (g¢,) and K* (gx,) current.
Two independent mechanisms of oscillation are identified, each
being associated with a Hopf bifurcation. One of the Hopf bifurca-
tions is linked to the calcium current gating variables, while the
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second one is associated with the dynamics of the cytoplasmic io-
nic concentrations. Bursting-like activity is shown to result from
the interaction of these mechanisms through a double Hopf bifur-
cation (HH). Afterward, the details of each of these mechanisms are
investigated using reduced models.

2. Methods
2.1. Complete model

We used the Ramirez-Nattel-Courtemanche model of canine
atrial cells (RNC) [21], with parameters as in [22]. The original
model encompasses some Cl~ dynamics, but no volume regulation
through osmosis. Since anionic dynamics is thought to be of little
relevance unless volume regulation is included [23], CI~ currents
were removed. A background K* current I, was added to restore
the original RNC resting state.

In the resulting “Complete Model”, the evolution of the mem-
brane voltage (V) and of the cytoplasmic sodium (Na;) and potas-
sium concentrations (K;) are governed by differential equations
representing the ionic flows through the cell membrane. The cal-
cium (Ca;) also takes into account the fluxes associated with the
sarcoplasmic reticulum (Isg) as well as to the cytosolic troponin
(Cappn) and  calmodulin  (Cacmgn) buffers  (Ipygers < Clcsgn
and Cdcman ). The sarcoplasmic reticulum (SR) consists of a Ca* up-
take (Ca,,) and release compartments (Ca,), the latter including a
calsequestrin buffer (Cacyn), such that Is; is a combination of Cayy,
Cacsqn and Cay,. The equation for Ca,, includes the dynamics of Ca*t
release from the SR through the ryanodyne receptors (RyR). The
model also incorporates the Na*/Ca?* exchanger (Inaca(V, Na;, Cay)),
Na*/K* pump (Ina (V, Na;)) and Ca®* pump (I,cq(Ca;)). The final set
of equations for V, Na; K; and Cg; is:

y __Iion_ -.__ZlNa. ‘.__EIKA
V= Cm Na; = 7 Ki= v, ’
Cly = 22 Lo s (2.1.1)
i 2F\ ri SR bufferss 1.

2ICa = *ZINaCa + IpCa + ICaL + IbCa§
ZIna = 3lInak + 3Inaca + INa + IoNa;

Tl = —2Inak + Ix1 + Iro + Tkurd + ke + Iis + Ik
Lion = ZIna + Zlx + Zlcq

Dynamics of currents and RyR involve 14 V-dependent and one
Ca-dependent gating variables, all of them governed by an equa-
tion of the form y = (y,, —y)/t,. Some stationary functions y_ (V)
are piecewise defined with a discontinuity. These were made
smooth and continuous by connecting the two pieces by a sigmoid
function as in [24]. The resulting differentiability of the vector field
is a condition for uniqueness of the solutions and makes ODE sys-
tems more amenable to bifurcation analysis [25]. All details of the
mathematical formulations of the complete model are provided in
Appendix C.

As a result of the relation between the concentrations and volt-
age [26],

V = Co(Na; + K; + 2Ca; + 2Cayp + 2Carer + 2Cacman

+ 2Carpn + 2Cacsgn) + G (2.1.2)

the model becomes a differential-algebraic system [27] with 23 dif-
ferential variables and one linear algebraic constraint. Because of its
linearity, the algebraic constraint is always invertible with respect
to any variables and the chosen algebraic variable may be elimi-
nated from the system of differential equations. It is then possible
to solve the system as mere ODE rather than DAE.

2.2. Reduced submodels

Simplified models are used to investigate the respective contri-
butions of gating and concentrations subsystems to the oscillatory
dynamics of complete model. They are chosen as simple as possible
to capture the essential mechanisms of oscillation. All the reduced
models share the following features:

e Ina gating variables (m, h, j) are stationary: m = m.(V),
h=h.(V),j=j.(V)

e The Ca®* charges of the SR and buffers are fixed at a con-
stant value, corresponding to the locus of saddle-node
bifurcation (SNF, see Fig. 1). Then, in Eq. (2.1.2):
Cayp + Care + Cacman+  Carpn + Cacsgn = const  such  that
Isg = IBuffers =0.

o In all reduced models, the Ca?*-dependent-inactivation gat-
ing variable fc, of I, is fixed at stationary value fc,(Ca;). As
discussed later, fc, is not essential for the loss of stability
and oscillations observed in the complete model.

The specific reduced models are:

e Vgates model: Model of V with gating dynamics: total of
nine differential equations, for V and the gating variables
of Icer (d, f) and potassium channels (xs, X, 04 0; Ug U;).
Ca;, Na; and K; concentrations are frozen at their values at
each equilibrium point of the Comp model, such that it
remains an equilibrium point in the Vgates model.

e Vf/Vd models: Only two differential variables: V and one of
the gating variables among {d, f}. All other gating variables
are fixed at their stationary values. Concentrations are as in
Vgates model.

e VConc model: Only the dynamics of concentrations: three
differential variables and one algebraic variable among {V,
Ca;, Na;, K;}. All gating variables are fixed at their stationary
values. We use in particular the version with V, Ca;, K; as
differential variables and Na; as algebraic equation in
Section 6.4.

e VCai model: Only {V, Ca;} as differential variables. No alge-
braic relation. All gating variables are fixed at their station-
ary values. Ng; and K; are frozen as in Vgates model at their
values of equilibrium point of the Comp model, for each
value of the parameter.

2.3. Parameters of control: gc, and g

Adrenergic stimulation has been shown to increase gc, often
more than twofold in human atrial myocyte [28] and up to fivefold
in canine ventricular myocyte [29]. In the latter, it can also increase
up to eightfold the I, maximum conductance [30]. Some muta-
tions also disrupt the B-adrenergic regulation of Ixs 8] or even pro-
voke a complete blockade. Other K* currents, such as Ix- and Iy,
are also augmented under adrenergic stimulation [28] or affected
by similar loss of function mutations [31]. Herein, Ixs was chosen
as a paradigmatic example. Normal conductances in the model
are gc,=26.4nS, and gis=5.61nS [21]. For bifurcation analysis,
gca Was varied from one to twice the normal value, and gy from
0 (complete blockade) to twice its normal value.

2.4. Numerical simulation

Numerical simulations were performed to identify stable limit
cycles (sustained oscillations) in all models. Numerical computa-
tions were performed with Matlab, using a modified - Euler meth-
od as in [21,22]. Step was generally At = 1072 ms, but was adapted
to stiffness for long transient trajectories.
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