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a b s t r a c t

The classical susceptible-infectious-recovered (SIR) model, originated from the seminal papers of Ross
[51] and Ross and Hudson [52,53] in 1916–1917 and the fundamental contributions of Kermack and
McKendrick [36–38] in 1927–1932, describes the transmission of infectious diseases between susceptible
and infective individuals and provides the basic framework for almost all later epidemic models, includ-
ing stochastic epidemic models using Monte Carlo simulations or individual-based models (IBM). In this
paper, by defining the rules of contacts between susceptible and infective individuals, the rules of trans-
mission of diseases through these contacts, and the time of transmission during contacts, we provide
detailed comparisons between the classical deterministic SIR model and the IBM stochastic simulations
of the model. More specifically, for the purpose of numerical and stochastic simulations we distinguish
two types of transmission processes: that initiated by susceptible individuals and that driven by infective
individuals. Our analysis and simulations demonstrate that in both cases the IBM converges to the clas-
sical SIR model only in some particular situations. In general, the classical and individual-based SIR mod-
els are significantly different. Our study reveals that the timing of transmission in a contact at the
individual level plays a crucial role in determining the transmission dynamics of an infectious disease
at the population level.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical modeling in epidemiology started with the
pioneering work of Bernoulli [10] in 1760 in which he aimed at
evaluating the effectiveness of inoculation against smallpox. The
model of Bernoulli described the susceptible and recovered classes
and already incorporated the chronological age of individuals (see
[20,21]). The susceptible-infectious-recovered (SIR) model as we
know today takes its origin in the fundamental works on ‘‘a priori
pathometry’’ by Ross [51] and Ross and Hudson [52,53] in 1916–
1917 in which a system of ordinary differential equations was used
to describe the transmission of infectious diseases between sus-
ceptible and infected individuals. In 1927–1933, Kermack and
McKendrick [36–38] extended Ross’s ideas and model, proposed
the cross quadratic term bIS linking the sizes of the susceptible
(S) and infective (I) populations from a probabilistic analysis of
the microscopic interactions between infective agents and/or

vectors and hosts in the dynamics of contacts, and established
the threshold theorem. Since then epidemic models have been
extensively developed in several directions, we refer to the mono-
graphs of Bailey [7], Bartlett [9], Muench [45], Anderson and May
[4], Busenberg and Cooke [13], Capasso [14], Murray [46], Daley
and Gani [16], Mode and Sleeman [47], Brauer and Castillo-Chavez
[11], Diekmann and Heesterbeek [19], Thieme [59], and Keeling
and Rohani [35] on these topics.

In order to focus on the dynamical properties of an infectious
disease itself, here we neglect the demography, namely the birth
and death processes, and the immigration/emigration process.
The classical SIR model takes the following form [4]:

S0 ¼ �b SI
N

I0 ¼ b SI
N � gRI

R0 ¼ gRI;

8><>: ð1:1Þ

where SðtÞ is the number of susceptible individuals, IðtÞ is the num-
ber of infective individuals (i.e. individuals who are infected and
capable to transmit the disease), RðtÞ is the number of recovered
individuals at time t, respectively, and N is the total number of
individuals in the population. The parameter b > 0 is called the
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infection rate (i.e. the contact rate times the probability of infection,
see [59]), and gR > 0 is the recovery rate (i.e. the rate at which infec-
tive individuals recover). The SIR model has been used successfully
to describe several epidemics (see for example [15]), but as far as
we understand, this rate of infection is only derived empirically,
namely by comparison of the model with real data.

When one neglects the demography, an epidemic model be-
comes a combination of the following aspects:

(a) a rule of contacts between individuals;
(b) a rule of transmission per contact;
(c) a rule of development of the infection at the level of

individuals.

Since the development of an infection is not instantaneous, rule
(c) can be described by introducing a latency between the trans-
mission of the pathogen and the moment at which an exposed
individual becomes capable to transmit the infection (namely be-
comes infective). This latency can be described by using either an
extra exposed class (when the time of latency follows an exponen-
tial law), which leads to SEIR models, or an age of infection (i.e. the
time since infection), which leads to age-structured models, we re-
fer to [61,60,33,59,41] for details on this topic. In this article, we
will neglect the aspect (c) and focus only on (a) and (b).

In an epidemic of an infectious disease, the graph of contact
plays a crucial role in the transmission of the disease. It is usually
admitted (see [4,30]) that the SIR model (1.1) is derived by using a
‘‘fully mixed’’ population. This means that all individuals have the
same probability to contact with any other individuals in the pop-
ulation. Here we will see that even with a fully mixed population,
the SIR model may fail to reproduce the dynamics of the epidemic.
Actually we will see that more sophisticated models are needed to
understand the dynamical property of an epidemic.

Of course in most epidemics, the contacts between individu-
als will arise only locally in space. Therefore more general
graphs of contact are needed, we refer to [26,48,24,25,43,8]
(and references therein) for more information on this subject.
Actually the space can be incorporated by using different ap-
proaches: it can be regarded as a continuous domain (see
[50,54,55]) or again as a network (see [6] and references there-
in). In this article, we will neglect the space in order to focus on
the classical SIR model.

Stochastic individual-based models (IBM) have been exten-
sively used to investigate threshold conditions and to evaluate
the efficacy of disease control measures in which each host is
viewed as an individual agent whose status changes based on
probabilistic events occurring over time. IBM are particularly suit-
able to describe the transmission of infectious diseases in a small
population in which the individual behavior plays an important
role in the spread of diseases [18,29,40,34]. Studies have been per-
formed to compare different types of IBM. For instance, [57] com-
pared two different types of individual-based models, one assumes
random mixing without repetition of contacts and the other as-
sumes that the same contacts repeat day-by-day. They tested
and compared how the total size of an outbreak differs between
these model types depending on the key parameters such as trans-
mission probability, number of contacts per day, duration of the
infectious period, different levels of clustering and varying propor-
tions of repetitive contacts. If the number of contacts per day is
high or if the per-contact transmission probability is high, as seen
in typical childhood diseases such as measles, they showed that
random mixing models provide acceptable estimates of the total
outbreak size. If the number of daily contacts or the transmission
probability is low, such as the infection of meticillin-resistant
Staphylococcus aureus (MRSA), they found that particular consider-
ation should be given to the actual structure of potentially

contagious contacts when designing the model. See also the com-
parison of a stochastic agent-based model and a structured meta-
population stochastic model for the progression of a baseline
pandemic event in Italy by Ajelli et al. [1].

We should mention that the Gillespie algorithm or Doob-Gilles-
pie algorithm (see [22,23,27,28]) provides a method to run random
Monte-Carlo simulations associated to ordinary differential equa-
tions (see [5,39]). This method was successfully used for chemical
or biochemical systems of reactions. In epidemics, we will see in
this article that changing the moment of pathogen’s transmission
from the beginning to the end of contact may influence the dynam-
ical property of the equations.

The main issue to be addressed in this article is the comparison
between the classical deterministic SIR model and its computer
stochastic versions. The stochastic models will be derived by using
Monte Carlo simulations or IBM. The increase in behavioral details
provided by IBM, however, leads to much greater computational
intensity and much greater difficulty in analyzing the significance
of parameters. Some comparisons between deterministic models
and IBM have been performed by Pascual and Levin [49] (in the
context of predator–prey), D’Agata et al. [17] (in the context of epi-
demics), Hinow et al. [32] (in the context of cell population dynam-
ics), and Sharkey [56] (in the context of epidemics in networks).
But as we will see, even with rather simple rules (a) and (b), the
comparison between the SIR model (1.1) and the IBM derived from
these stochastic rules (at the individual level) is not clear in gen-
eral. Actually we will see that more general classes of SIR models
are necessary to derive a comparison with the IBM.

The paper is organized as follows. In Section 2 we make some
assumptions about the rules of contacts between susceptible and
infective individuals, the rules of transmission of diseases through
these contacts, and the time of transmission during contacts. In
Section 3 we analyze the transmission driven only by susceptible
individuals and compare the numerical simulations between the
classical SIR model and the IBM. In Section 4, the transmission dri-
ven only by infective individuals is modeled and analyzed. Our
analysis and simulations demonstrate that in both cases, the IBM
converges to the classical SIR model only in some particular situa-
tions. In general, the classical SIR model and the IBM are signifi-
cantly different. A brief discussion is given in Section 5.

2. Rules of contacts and transmission

In this section we present the stochastic process describing con-
tacts between individuals. This process will lead to the construc-
tion of a simple deterministic model. The contacts are supposed
to be arbitrarily given at an initial time, and in order to describe
the evolution of the contacts with time, we will use the following
rules.

We would like to point out that the evolution of the contact net-
work is indeed dynamic since it changes with time. We define the
rules of contacts, the rules of transmission, and the time of trans-
mission for the purpose of numerical and stochastic simulations
of the SIR model. These rules may not affect the outcome of an epi-
demic from a deterministic modeling point of view. However, they
are important in numerical and stochastic simulations and produce
dramatically different results.

2.1. Rules of contacts

Firstly, we make some assumptions on the rules of contacts.

(a) At any time each individual has initiated exactly one contact
with an individual in the population (possibly himself).

(b) The duration of a contact follows an exponential law and the
average duration of a contact is TC > 0.
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