
Optimal experimental design for discriminating between microbial
growth models as function of suboptimal temperature

I. Stamati a, F. Logist a, E. Van Derlinden a, J.-P. Gauchi b, J. Van Impe a,⇑
a BioTeC & OPTEC, Chemical Engineering Department, KU Leuven, W. de Croylaan 46, 3001 Leuven, Belgium
b Unité MIA (UR341), INRA, Domaine de Vilvert, 78352 Jouy en Josas, France

a r t i c l e i n f o

Article history:
Received 19 December 2012
Received in revised form 19 December 2013
Accepted 8 January 2014
Available online 27 January 2014

Keywords:
Predictive microbiology
Model discrimination
Optimal experimental design
Dynamic modeling
Optimization

a b s t r a c t

In the field of predictive microbiology, mathematical models play an important role for describing micro-
bial growth, survival and inactivation. Often different models are available for describing the microbial
dynamics in a similar way. However, the model that describes the system in the best way is desired. Opti-
mal experimental design for model discrimination (OED-MD) is an efficient tool for discriminating among
rival models.

In this work the T12-criterion proposed by Atkinson and Fedorov (1975) [1] and applied efficiently by
Ucinski and Bogacka (2005) [2] and the Schwaab-approach proposed by Schwaab et al. (2008) [3] and
Donckels et al. (2009) [4] will be applied for discriminating among rival models for the microbial growth
rate as a function of temperature. The two methods will be tested in silico and their performances will be
compared.

Results from a simulation study indicate that it is possible to validate the case that one of the proposed
models is more accurate for describing the temperature effect on the microbial growth rate. Both meth-
ods are able to design inputs with a sufficient discrimination potential. However, it has been observed
that the Schwaab-approach provides inputs with a higher discrimination potential in combination with
more accurate parameter estimates.

� 2014 Published by Elsevier Inc.

1. Introduction

The need to find the best model arises when different models
are proposed for the same process. For describing the influence
of temperature on the microbial growth rate lmax there exist sev-
eral models in predictive microbiology. Two of these models are
the Cardinal Temperature Model with Inflection (CTMI) [5] and
the adapted CTMI (aCTMI) [6,7]. Whereas the CTMI assumes a
one-phase linear relation between

ffiffiffiffiffiffiffiffiffiffilmax
p

and the temperature in
the suboptimal temperature range, the aCTMI is build from the
observation of two phases in this temperature region. As this sub-
optimal temperature range typically covers the temperature span
in which food products are stored, an accurate model description
of the growth rate is of highest importance. Upto now, it is as-
sumed that the CTMI is generally valid for all strains. Divergence
from this model only has been observed for Listeria [6,7] and Esch-
erichia coli K12 [8].

The main objective of this simulation study is to discriminate
CTMI and aCTMI, by performing in silico experiments. For perform-
ing these in silico experiments two specific experimental design

procedures for model discrimination will be tested and their per-
formances will be compared. The first one is T-procedure applied
efficiently by Ucinski and Bogacka [2], based on the T12-criterion
proposed by Atkinson and Fedorov [1], that leads to non sequential
T12-optimal designs. The second one is the Schwaab-procedure
based on the approach proposed by Schwaab et al. [3] and Donc-
kels et al. [4], that leads to sequential designs. At the T12-criterion
the minimum of the sum of squares for the lack of fit of the model
is maximized. The Schwaab-approach includes the posterior
covariance matrix of the estimated model parameters.

In this simulation study, for the two approaches – the T-proce-
dure and the Schwaab procedure – typical constraints that arise
when modeling microbial dynamics are taken into account. These
constraints involve, e.g., (i) an a priori specification of the number
of (time-consuming) experiments and (ii) the uncertainty of the
actual parameter values as typically only estimates from literature
or a preliminary experiment are present. In contrast to a typical
experiment design of an arbitrarily chosen set of constant temper-
ature levels, the dynamic experiments designed within this work
will be used to efficiently discriminate between these two models.

The paper is structured as follows. In the first part, optimal
experimental design for model discrimination is presented cover-
ing the two approaches. Afterwards the complementary tasks for
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the optimal experimental design are sketched out. In the third part,
the case study with the two proposed models is outlined followed
by the implementation. Finally, in the last part the results from
both methods for the discrimination between the two models are
presented followed by the conclusions.

2. Optimal experimental design for model discrimination

The procedure for discriminating between two models M1 and
M2 will be described in this section. The objective function J for
model discrimination is typically a discrimination criterion that
maximizes a function of the difference between the model predic-
tions. As performing experiments in predictive microbiology is typ-
ically time and labor intensive, a practical constraint is to have the
same experimental burden, i.e., performing the same number of
experiments in both approaches.

2.1. Mathematical model formulation

In a general statistical framework it can be assumed that obser-
vations can be repeated for different settings of experimental con-
ditions Tið�; biÞ 2 T � Bs; i ¼ 1; . . . ;Ns where T is the set of all
measurable functions satisfying Tlow 6 TðtÞ 6 Thigh for all time
t 2 ½t0; tf �;B is a set of discrete experimental conditions
bi ¼ ðb1; . . . ; bsÞ

0 and Ns is the number of design support points
(i.e., number of designed experimental conditions Tið�; biÞ).

The following statistical model is considered at each tk time in-
stant [9]:

yijðtkÞ ¼ gðtk; h; Tið�;biÞÞ þ eijðtkÞ; i ¼ 1; . . . ;Ns; j ¼ 1; . . . ; ri: ð1Þ

where gðÞ is the true model of the process, sampled at given time
instants t0 < t1 < � � � < tk < � � � < tf . It is assumed that all the errors
eijðtkÞ are normal and independent with each other 8i; j; k. Moreover
8i; j; k; EðeijðtkÞÞ ¼ 0 and VðeijðtkÞÞ ¼ r2.PNs

i¼1ri ¼ N; ri is the number of repetitions of an experiment lo-
cated on a support point i, for an experimental condition ðTið�Þ; biÞ.

The two competing monoresponse models M1 and M2 are ex-
pressed by g1ðt; h1; Tð�ÞÞ and g2ðt; h2; Tð�ÞÞ where h1 2 H1 2 Rp1 and
h2 2 H2 2 Rp2 are vectors of unknown parameters and H1 and H2

are known compact sets. In the current discrimination procedures
the initial conditions parameters bi are excluded, further there will
be no repetitions of the experiments, i.e., ri ¼ 1 8i.

2.2. T12-criterion

The first approach (T12-criterion [2,1]) will be described here.
The efficiency of this method is based on the fact that the mini-
mum of the sum of squares for the lack of fit of the model is max-
imized. Thus, it takes into account the flexibility of the model to fit
suitably the responses of the other model. Among others, this cri-
terion has been proven to lead to an increase of the power of the
discrimination statistical tests.

In this method the first model M1 is considered as the true
model. Therefore parameter h1 is known and can be omitted giving
gð�; �Þ � g1ð�; h1; �Þ.

The problem of discriminating between the two models is de-
fined by the function [9]

T12ðnNÞ ¼ min
h22H2

XNs

i¼1

wi

Xtf

tk¼t0

kgðtk; Tið�ÞÞ � g2ðtk; h2; Tið�ÞÞk2 ð2Þ

where the design nN is defined by:

nN ¼
ðT1ð�ÞÞ; . . . ; ðTNs ð�ÞÞ

w1; . . . ; wNs

� �
2 N: ð3Þ

The experimental conditions Tið�Þ represent the design support
points, wi are weights at these support points with

Pn
i¼1wi ¼ 1 and

N is a feasible solution set.

2.3. Schwaab-approach

The second criterion (Schwaab-approach [3,4]) that has been
used is typically based on a sequential approach and will be de-
scribed below. The primary objective is the increase of the discrim-
ination power but a decrease of the a decrease of the parameter
estimate variances is obtained as well, with the use of the posterior
covariance matrix of parameter estimates [3]. Differently from the
previous method neither of the two models is considered as true.
In this approach for sake of clarity x is used as a reference for an
experiment instead of n.

For discriminating between model M1 and M2, for experiment
xNeþ1 defined by TNeþ1ð�Þ and tk (with Ne the number of available
experiments either preliminary or discrimination experiments
since it is a sequential approach) the discrimination function, that
has to be maximized, is defined at every tk by:

D1;2ðxNeþ1Þ ¼ dT
1;2ðxNeþ1ÞV�1

1;2ðxNeþ1Þd1;2ðxNeþ1Þ ð4Þ

with:

d1;2ðxNeþ1Þ ¼ ĝ1ðxNeþ1; ĥ1Þ � ĝ2ðxNeþ1; ĥ2Þ

V1;2ðxNeþ1Þ ¼ 2V þ V1ðxNeþ1Þ þ V2ðxNeþ1Þ

V1ðxNeþ1Þ ¼ B1ðxNeþ1ÞVh1 ðxNeþ1ÞBT
1ðxNeþ1Þ

Vh1 ðxNeþ1Þ ¼ BT
1ðxNeþ1ÞV�1B1ðxNeþ1Þ þ V�1

h;1ðxNe Þ
h i�1

In the following formulas tk is omitted for sake of simplicity.
Here, ĝ1ðxNeþ1; ĥ1Þ is the prediction for model M1 (similarly for
model M2), V1;2ðxNeþ1Þ 2 RK�K is the posterior covariance matrix
of the differences between model predictions, K is the number of
discrete time points tk, V 2 RK�K is the covariance matrix of the
experimental deviations and V1ðxNeþ1Þ 2 RK�K is the covariance ma-
trix of model prediction variations calculated for model M1 (and
similar for model M2). The model uncertainty includes the uncer-
tainty on the model predictions and on the measurements [3,4].

B1ðxNeþ1Þ 2 RK�p1 is the sensitivity matrix that contains the first
derivatives of model m responses with respect to its parameters:

@g1ðxNeþ1; h1Þ
@h1

� �

Vh1 ðxNeþ1Þ 2 Rp1�p1 is the posterior covariance matrix of model
parameter estimates. It can be seen that Vh1 consists two parts,
i.e., the covariance matrix of the new designed experiment with
experiment condition TNeþ1ð�Þ and the current covariance matrix
of the parameter estimates. The covariance matrix of the estimated
parameters is approximated by the inverse of the Fisher
information matrix (FIM), since the errors are assumed indepen-
dent [10].

3. Complementary tasks for model discrimination

Apart from the main optimization task there are some comple-
mentary tasks for the discrimination. Before the discrimination a
preliminary experiment has to be designed for obtaining an initial
estimate of the parameters. When an experiment is performed
(either preliminary or discriminatory) it provides measurements
that can be used in a parameter estimation task. Finally after the
design of inputs for the discrimination a model adequacy test
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