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a b s t r a c t

We present general methodology for sequential inference in nonlinear stochastic state-space models to
simultaneously estimate dynamic states and fixed parameters. We show that basic particle filters may
fail due to degeneracy in fixed parameter estimation and suggest the use of a kernel density approxima-
tion to the filtered distribution of the fixed parameters to allow the fixed parameters to regenerate. In
addition, we show that ‘‘seemingly’’ uninformative uniform priors on fixed parameters can affect poster-
ior inferences and suggest the use of priors bounded only by the support of the parameter. We show the
negative impact of using multinomial resampling and suggest the use of either stratified or residual
resampling within the particle filter. As a motivating example, we use a model for tracking and prediction
of a disease outbreak via a syndromic surveillance system. Finally, we use this improved particle filtering
methodology to relax prior assumptions on model parameters yet still provide reasonable estimates for
model parameters and disease states.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

State-space models are commonly used in the analysis of bio-
logical data [1–4]. In particular, these models are frequently used
for disease outbreaks to simultaneously model the underlying dis-
ease dynamics and the observation process [5–7,3,8]. Together
with syndromic surveillance systems [9–13], these models are
used to identify emerging disease outbreaks [14], estimate their
severity [6], and predict their duration [7]. Typically, the general
form of these models may be reasonably assumed, but the models
will have unknown fixed parameters that define the disease
dynamics and the observation process for a particular outbreak.
Based on similar previous outbreaks, the range and likely values
for these fixed parameters may be available.

In statistical applications where prior knowledge or beliefs
about unknown quantities are available, the Bayesian framework
is often convenient for performing statistical analysis. Bayesian
inference is conducted through the posterior distribution of any
unknown quantities, obtained by updating prior information using

observed data. However, the calculation of the posterior distribu-
tion in state-space models frequently involves complicated inte-
grals without an explicit analytical form. The most common
approach to approximating these posterior distributions is Markov
chain Monte Carlo (MCMC) [15]. In a sequential context, e.g. syn-
dromic surveillance, MCMC is inefficient due to the increase in
computational cost incurred by the need for the entire MCMC to
be rerun as each new observation arrives. Sequential Monte Carlo
(SMC) – or particle filtering – methods enable on-line inference
by updating the estimate of the posterior as new data become
available. Furthermore, SMC methods can be flexible, general, easy
to implement, and amenable to parallel computing. For a general
introduction, please see [16,17].

Early SMC methods, including the bootstrap filter [18,19] and
the auxiliary particle filter [20], assumed all fixed parameters were
known. A key defining step in these filters is the use of resampling,
which results in particles with low probability being eliminated
and particles with high probability being duplicated. When all
fixed parameters are known, these filters work remarkably well.
In the presence of unknown fixed parameters, these filters suffer
dramatically from a degeneracy issue due to the fixed parameters
(being treated as dynamic states with degenerate evolutions) never
being regenerated, and thus only a few distinct values for the fixed
parameters remain after a few time points. To combat this degen-
eracy, a number of alternative approaches have been introduced. In
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this paper, we focus on the kernel density particle filter [21] due to
its wide applicability, ease of implementation, and good
performance.

The rest of the article proceeds as follows. Section 2 contains a
description of state-space models and sequential estimation. Sec-
tion 3 describes a variety of particle filtering methodologies includ-
ing the kernel density approach of [21]. In Section 4, we introduce a
nonlinear dynamic model for a disease epidemic similar to the one
used in Skvortsov and Ristic [3]. In Section 5, we apply the particle
filtering methods described in Section 3 to the model described in
Section 4. In Section 6, we benefit from the efficiency of more
recent particle filtering methods to estimate a more complicated
model. In Section 7, we conclude by reviewing more advanced
particle filtering methods as well as the general performance and
capabilities of SMC algorithms.

2. State-space models

State-space models are a general class of statistical models used
for analysis of dynamic data and have been used extensively in
modeling disease outbreaks [5,22,6,7,3]. State space models are
constructed using an observation equation, yt � py;tðyt jxt; hÞ, and a
state evolution equation, xt � px;tðxt jxt�1; hÞ, where yt is the
observed response, xt is a latent, dynamic state, and h is an
unknown fixed parameter, all of which could be vectors. The yts
are assumed independent given xt and h, and the xts are assumed
independent given xt�1 and h. The distributions py;t and px;t are
assumed known conditional on the values of h and xt in the obser-
vation equation and h and xt�1 in the evolution equation. Depend-
ing on whether the observations and the states are continuous or
discrete, the distributions themselves may be continuous or dis-
crete. The distributions are typically assumed to only vary with
xt and h, and therefore the t subscript is dropped. For simplicity,
we also drop the x and y subscript and instead let the arguments
make clear which distribution we are referring to. Thus, the general
state-space model is

yt � pðyt jxt; hÞ xt � pðxt jxt�1; hÞ:

A fully specified Bayesian model is obtained by also specifying the
prior pðx0; hÞ.

The dimension of xt need not remain constant with respect to t.
For instance, we could describe a process where xt depends on the
entire history of states up to t by letting xt�1 ¼ ðx�1; x�2; . . . ; x�t�1Þ

0

and defining xt ¼ ðxt�1; x�t Þ
0, where x�t is the new state generated

at time t.
Special cases of these state-space models include hidden Mar-

kov models [23,24], where the state xt has discrete support, and
dynamic linear models (DLMs) [25], where each distribution is
Gaussian whose mean is a linear function of the states and whose
variance does not depend on the mean. The disease outbreak mod-
els discussed in Section 4 are specific cases of state-space models,
but we introduce these models in generality here because the par-
ticle filtering methods discussed in Section 3 apply to any model
with this form.

2.1. Sequential estimation

When data are collected sequentially, it is often of interest to
determine the filtered distribution, the distribution of the current
state and parameters conditional on the data observed up to that
time. This distribution describes all of the available information
up to time t about the current state of the system and any fixed
parameters. It can be updated recursively using Bayes’ rule:

pðxt; hjy1:tÞ / pðytjxt ; hÞpðxt; hjy1:t�1Þ ð1Þ

where y1:t ¼ ðy1; . . . ; ytÞ. Only in special cases can pðxt ; hjy1:tÞ be eval-
uated analytically, e.g. in DLMs when h is the observation variance
[Section 4.3, 24]. When analytical tractability is not present, we turn
to numerical methods including deterministic versions, e.g. the
extended Kalman filter and the Gaussian sum filter [26], or Monte
Carlo versions such as particle filters.

3. Particle filtering

Particle filtering is an SMC inferential technique based on
repeated use of importance sampling. It aims to approximate the
filtered distribution at time t through a weighted Monte Carlo real-
ization from this distribution in terms of J particles, i.e.

pðxt ; hjy1:tÞ �
XJ

j¼1

wðjÞt d
xðjÞt ;hðjÞð Þ ð2Þ

where xðjÞt ; h
ðjÞ

� �
is the location of the jth particle at time t;wðjÞt is the

weight of that particle with
PJ

j¼1wðjÞt ¼ 1, and d is the Dirac delta
function. A variety of SMC techniques have been developed to pro-
vide more efficient approximations to Eq. (1) in the sense that with
the same computation time a better approximation is achieved. We
now review three fundamental particle filtering techniques: the
bootstrap filter, auxiliary particle filter, and kernel density particle
filter. In Section 5, we compare the efficiency of these techniques
in the syndromic surveillance context.

3.1. Bootstrap filter

The first successful version of particle filtering is known as the
bootstrap filter (BF) [18,19]. Since this method and the auxiliary
particle filter were developed for the situation when h is known,
we will (for the moment) drop h from the notation. Given an
approximation to the filtered distribution at time t as in Eq. (2),
to obtain an approximation to the filtered distribution at time
t þ 1, perform the following steps for each particle j ¼ 1; . . . ; J:

1. Resample: sample an index k 2 f1; . . . ; j; . . . ; Jg with associated

probabilities wð1Þt ; . . . ;wðjÞt ; . . . ;wðJÞt

n o
,

2. Propagate: sample xðjÞtþ1 � p xtþ1 xðkÞt

���� �
, and

3. Calculate weights and renormalize:

~wðjÞtþ1 ¼ p ytþ1 xðjÞtþ1

���� �
wðjÞtþ1 ¼ ~wðjÞtþ1

XJ

l¼1

~wðlÞtþ1

,
:

This procedure can be applied recursively beginning with an
initial set of weights wðjÞ0 and locations xðjÞ0 for all j, usually obtained
by sampling from the prior with uniform weights.

3.2. Auxiliary particle filter

One problem that arises in implementing the BF is that wðjÞt will

be small for particles where p yt xðjÞt

���� �
is small, and these particles

will contribute little to the approximation to pðxt jy1:tÞ. The auxil-
iary particle filter (APF) aims to mitigate this by anticipating which
particles will have small weight using a look ahead strategy [20].
Given an approximation to the filtered distribution at time t as in
Eq. (2), the APF approximates pðxtþ1jy1:tþ1Þ by the following:

1. For each particle j, calculate a point estimate of xðjÞtþ1 called lðjÞtþ1,
e.g.

lðjÞtþ1 ¼ E xtþ1 xðjÞt

���� �
:
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