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In this paper, we consider the basic reproduction number, Ry, a parameter that characterizes the trans-
mission potential of an epidemic, and explore a novel way for estimating it. We introduce a stochastic
process which takes as starting points the classical SIR (susceptibles-infected-removed) models,
deterministic and stochastic. The estimation method rests on an extremum property of the deterministic
SIR model, and could be applied to past surveillance data on epidemic outbreaks, data gathered at
different locations or in different years. Our estimators take into account some practical limitations, in
particular the fact that data are collected at preassigned times. We derive asymptotic properties of the
estimators and perform a simulation study to assess their small sample behavior. We illustrate the
method on real data (from the USA Centers for Disease Control and Prevention site) and we point to
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various extensions to our approach, as well as practical implementation issues.
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1. Preliminaries
1.1. Introduction

Most epidemic models (deterministic or stochastic) are of
compartmental type. The SIR (susceptibles-infected-removed) type
ones suppose the following: in a population free of disease (the
susceptibles), a few infected (and infectious) primary cases are
introduced; the primary cases infect other, secondary cases, and
the epidemic spreads; in the end, most infected recover and
become immune, while some die; both recovered and dead are
removed, i.e., they cannot be infected again. In the original SIR
deterministic ODE (ordinary differential equations) model given
in Kermack and Mc Kendrick [24, special case B], a “critical” num-
ber of susceptibles, the relative removal rate, is necessary in order
to have an epidemic outbreak. (This is true in the general case as
well, but in our paper we refer mainly to the simpler formula.) This
condition comes to the fact that its counterpart, the basic reproduc-
tion number, Ry, see (2), must be greater than 1 [1]. In many other
extensions of model (1), Ry has retained its importance and
significance as a threshold value [35,5]. It has been argued that
an epidemic can be contained if the fraction of vaccinations is
greater than 1 — 1/Ry, whether Ry is defined via an ODE model or
not [39,2,7].
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In this paper, we introduce a model where the course of the epi-
demic is essentially driven by the deterministic process, while
incorporating the stochasticity inherent in field data. Indeed, it is
generally agreed that, in large populations, deterministic systems
can be used to describe the (approximate) behavior of the infec-
tious process. Further, we focus on a new estimation method of
Ro which can resort to data provided by health agencies (surveil-
lance data). These data are incomplete in the sense that only inci-
dence (new cases) are monitored over time, since neither infected
prevalence nor total removals, at some time t, are known.
Moreover, the data are collected at discrete, preassigned times.
Our easy to implement estimation method takes into account these
practical limitations, and rests on a classical property of the deter-
ministic SIR system. Our procedure has the advantage of proposing
both point and interval estimators.

The presentation is structured as follows. We start from two
classical SIR models and introduce a variant of these classical SIR
models, as well as the idea behind our estimation method (Sec-
tion 1.2). In Section 1.3, we compare the new approach to existing
literature. Further, we describe two novel estimators and study
their properties, exact and asymptotic (Section 2). Finally, we apply
our method to simulated and surveillance data (Section 3), while
possible extensions and a final conclusion are given in Section 4.
Useful properties of the deterministic system are given in
Appendix A, where we prove the main properties of the estimation
method as well.
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1.2. Two classical SIR models and a new model

The classical deterministic SIR (susceptibles-infected-removed)
models presented in Kermack and Mc Kendrick [24] which are
extensions of ideas in Ross and Hudson [37] assume that a
population of fixed size, N, is divided into susceptibles, infected
(and infectious), and removed (by immunization or death). Thus,
they correspond to a situation where the infected eventually
becomes immune (or dies), and where the population is, in large
part, susceptible to the disease. In what follows we refer mainly
to the special case (1) [24, formula (29)].

In the original development, x(t) is the number of susceptibles,
y(t) the number of infected, and z(t) the number of removed,
t € [0, cc], and satisfy the ODE system (8y > 0, 7y > 0)

X(t) = —pux(0)y (1),
Y'(£) = Bux(0)y(t) = ywy(0), (1)
Z(t) = wy(t),

of initial conditions z(0) = 0, x(0) = x, > 0 and y(0) =y, > 0, with
Xo + Yo = N; usually y(0) is negligible when compared with x(0).
The ratio py = yy/Bn, is the relative removal rate (see, e.g., [14,
Chapter 2]). In general, the basic reproduction number R, is defined
as follows: if one infected is introduced in a very large population
of susceptibles only, i.e., x(0) ~ N, the average number of secondary
infections this infected produces during the period he is infectious
is Ro. In model (1) this property can be translated into

Ro =N _ N @)

W PN

because By is the contact parameter and 1/y, is the average time
one is infectious (the full argument is given in Heesterbeek and
Dietz [18] and is related to the infectivity function).

Further, set gy = /N, yy =7 (8> 0,7 > 0). Then p = y/p is the
relative removal rate per susceptible and the system satisfied by
the proportions (x(t),y(t),z(t)), with initial value (xo,y,,20), is
related to the system satisfied by the sizes (x(t),y(t),z(t))
= (Nx(t),Ny(t),Nz(t)) with initial value (Nxo,Ny,,Nzp) in the
following obvious way:

X(t) = = {X(Oy(0), X(t)
V(&) = {xOP(E) —y(t), < (YO =pxOyE) —w(®), ()
Z(t) = yy(t), Z(t) = ().

Both systems in (3) give the same value of R,. Indeed,
X(tz) = py = pN and Ry = N/py = 1/p. In what follows, wherever
we relate population sizes to percentages we use the notation
(x(t),y(t),z(t)) for percentages and (x(t),y(t),z(t)) for sizes.

It is well known in the ODE literature, that the behavior of the
solution to (3) differs according to xo > p or Xo < p and, in this last
case, there is no epidemic, as y(t) is strictly decreasing (see Appen-
dix A). In the case where there is an epidemic, by considering the
time t; where z'(t) = y'(t) =0, one has from (3) the relation at
the core of our estimation method,

- N N 1
p =X(tz) <= py = X(tz); Rofmfmfm’ 4)
which allows us to express Ry as a function of x(tz). Note that the
second formula in (4) becomes Rox(tz) = 1, which is similar in spirit
to various proposals due to Hethcote and his co-authors, as
reviewed in Hethcote [20], or to the definition of Ry given in Ander-
son and May [2] in terms of the fraction of the host population at
equilibrium in endemic models. What is particular to our case
and is exploited in the estimation is that all trajectories in the
(x,y) phase plane pass through (p, max,y(t)), no matter the starting
value (xo,¥,) in Xo + Yy, < 1, with Roxo > 1 (see [19]). Moreover, we

—Bx(0)y(t),

propose an explicit model of random variation around the deter-
ministic one which allows, among others, to compute confidence
intervals.

In order to introduce the new approach we recall that the sto-
chastic model which is the natural counterpart of the deterministic
version (1), is given by a trivariate Markov chain in continuous
time, {(X(t),Y(t), Z(t)), t > 0} with state space S ¢ N? and initial
values (X(0),Y(0), Z(0)). We will refer to it as the stochastic SIR
model or Model 1 (see Appendix A, Section A.2). This type of model
originates in the work of McKendrick [30]. The stochastic SIR
model was studied by Bartlett [4], Kendall [23], as well as Whittle
[41] and Ball [3]. In Model 1, the values X(t), Y(t), and Z(t) satisfy
the condition X(t) + Y(t) +Z(t) =N, for all t > 0. Therefore, in
the literature, it is customary to express Model 1 in terms of the
bivariate process (X(t),Y(t)). Kurtz [25,26] proves that, if N — oo,
the paths of the stochastic model of parameters (8/N,7) converge
weakly to the solution of (3) with both stochastic and deterministic
values translated into proportions.

The method developed in this paper stems from the following
idea: although, conceptually, it makes sense to express X(t) and
Z(t) in terms of Y(t), as has been done for Model 1 [23], if we want
to estimate the parameters in (1), or at least the ratio p = y/8 and
Ro, Y(t) cannot be used, since it is not observed in current practice.
Moreover, the cumulative number of removals Z(t) is also
unknown, but some studies report the cumulative number of
deaths, which can be supposed to be a small proportion of the
number of removals. What is actually measured is the incidence,
i.e., the new cases (newly infected), which corresponds to the
decrease in the number of susceptibles in given time intervals. It
is well-known that the expectations of the random variables in
Model 1 do not satisfy (1) (see [22]).

By construction, in the stochastic SIR Model 1 pairs of random
variables satisfy simultaneous surges and drops. Thus wherever
Y(t) increases by one unit, then X(t) goes down by one unit while,
wherever Y(t) drops by one unit, then Z(t) augments by one unit.
Therefore, rather than modeling Y(t), we propose to model the
couple of “observed” susceptibles and removals (X(t),Z(t)).

Ourinterestis focused on the marginal processes X(t) and Z(t), and
the bivariate process (X(t),Z(t)) is such that the expected value of the
triplet (X(t),N — X(t) — Z(t), Z(t)) is the solution (x(t),y(t),z(t)) of the
system (1), in the parametrization (fy,7yy) = (8/N,7y) with >0,
7> 0. In particular, the expected values satisfy x(t)+ z(t) =
N — y(t). For the marginal processes we obtain that:

a. X(t) is a non homogeneous pure death process of rate

Hx () = By (DX(E).

b. Z(t) is a non homogeneous Poisson (birth) process of rate

Zz(t) = py(t).

In other words, given that our estimation method is meant to be
applied to larger populations, we assume that the course of the epi-
demic is essentially driven by the deterministic process, but we
take into account the stochasticity inherent in field data. The
bivariate process is given in Appendix A, Section A.2.

Finally, we introduce the process of the (cumulative) number of
deceased observed at time t > 0. Let p be the fixed probability that
aremoval corresponds to a death and let V; be an indicator variable
such V; =1 if the jth removal is a death, and 0 otherwise. Thus
Vj, j=1,2,... are i.i.d. Bernoulli variables with success probability
p. We propose to model {D(t),t > 0} as the compound non
homogeneous Poisson process

Z(t)
Vi, Z(t) >0,
D(t) = Z ’ (5)
0, otherwise.
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