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This paper considers a two-dimensional logistic model to study populations with two genders. The
growth behavior of a population is guided by two coupled ordinary differential equations given by a
non-differentiable vector field whose parameters are the secondary sex ratio (the ratio of males to
females at time of birth), inter-, intra- and outer-gender competitions, fertility and mortality rates and
a mating function. For the case where there is no inter-gender competition and the mortality rates are
negligible with respect to the density-dependent mortality, using geometrical techniques, we analyze
the singularities and the basin of attraction of the system, determining the relationships between the
parameters for which the system presents an equilibrium point. In particular, we describe conditions
on the secondary sex ratio and discuss the role of the average number of female sexual partners of each
male for the conservation of a two-sex species.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

When studying biological populations in nature, it is usual to
recognize an unvarying proportion of the genders in a stable
environment. Such a prevalent observation has been a remarkable
motivation for fundamental contributions in the theory of
sex-structured populations. Fisher’s comprehension [ 3] of the com-
monness of nearly 1:1 sex ratios, Hamilton’s explanation [10] for
the existence of biased sex ratios, Trivers—Willard hypothesis
[18] on the parental capability to adjust the sex ratio of offsprings
as a response to environmental changes and Charnov mathemati-
cal proposal [1] for sex allocations are some relevant examples of
this kind of legacy.

In a previous work [6], we have developed a dynamic-program-
ming model in order to discuss whether the identification of a
stable sex ratio in nature might mirror a population maintenance
cost under finite resources. Here we propose another dynamical
approach to study sex-structured populations which consists in
modeling the time evolution of two-sex populations with differen-
tial equations. Under this point of view, the interactions of the
individuals are represented as a mean tendency of the whole pop-
ulation. Furthermore, instead of looking for a sex ratio that would
maximize the efficiency of individuals in the use of available
resources, in the population-dynamics formulation, secondary
sex ratio is actually one of the parameters of the system. In such
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a case, the aim is thus, for suitable mating functions, to describe
and classify the behavior of the population for distinct progeny
sex ratios and distinct mortality sex ratios [4,7,12,16,17,19,20].
For instance, it has been argued in [16,20] that the marriage rate
plays an important role in the stability of the population, since
polygamy would amplify the sensitivity of the system to the vari-
ation of the other parameters. In another direction, a model with
stable solutions for monogamous and polygamous populations
was presented in [17].

In this paper, we propose a nonsmooth two-sex logistic model
(which may be seen as an extension of previous formulations)
and we use the qualitative-geometric theory of ordinary differen-
tial equations to study it. Considering sex-ratio dependent compe-
tition terms, we obtain sufficient and necessary conditions for the
persistence of the population. In particular, we show that the
dynamical behavior of the population is governed by a highly
nonlinear relationship between the secondary sex ratio and the
competition parameters, and that the average number of male’s
reproductive partners is an important parameter that may allow
a two-sex species to find a stable equilibrium.

The paper is organized as follows. In Section 2, we recall some
classical models for two-sex populations and we define the model
that will be studied. In Section 3, we detail its singularities by ana-
lyzing two vector fields defined on the plane and naturally associ-
ated with the original one. In Section 4, we study the relationships
between secondary and tertiary sex ratios and the competition
parameters of the model. In Section 5, we describe the local and
global behavior of the two associated vector fields. In particular,
we point out conditions on the secondary sex ratio that assure
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the existence of asymptotically stable singularities and the
nonexistence of cycles. Hence, we discuss the local and global
dynamics for the original vector field. In Section 6, we outline open
questions about the dynamics of the model and some possible
extensions.

2. The model

We consider here a two-sex logistic model which follows the
basic lines of the classical logistic model: the population growth
is given by the balance between the birth rate (which depends
on the quantity of individuals in the population) and the death rate
(which depends on square of the quantity of individuals, repre-
senting the interactions between them).

Non-logistic models for two-sex populations have been pro-
posed at least since the 1940’s (for a review see [9]). For instance,
Kendall [13, p. 247], proposed two non-logistic models. The first
one consists in a model for the behavior of male and female popu-
lations described by the following coupled ODE’s:

X = byF(x,y) — myx,

¥ =byF(x.y) —myy. M

where x and y denote the quantity of females and males at time ¢,
respectively, m, and m, denote the mortality rates of females and
males, by and by are independent parameters for the birth rate of
each gender, and F is the mating function (which was supposed to
be nonnegative and symmetric in x and y) and represents the con-
tribution of males and females to the birth rate. In his work, Kendall
studied the case where m, = m,, b, = b, = 1/2 and F has one of the
following forms:

1/2

Xy, (xy)'7, x+y or min{x,y}.

The second model proposed by Kendall addresses the problem
of pair formation in two-sex populations. In such a model, three
coupled ODE’s take into account the numbers of unmarried males,
unmarried females and married couples. Once again, a central role
is played by the mating function.

Following Kendall’s work, Goodman [ 7] studied the cases where
my # m, and b, # b, for several mating functions, including the
above ones as well as F(x,y) = x and F(x,y) = y. In [4], Fredrickson
assumed two hypotheses on the mating function F: heterosexuality
(that is, F(0,y) = F(x,0) = 0) and homogeneity (in the sense that
F(kx,ky) = kF(x,y)). Using these hypotheses, he found a general
form for differentiable mating functions and deduced that they
are consistent: if there is a preponderance of some gender in the
population, then the birth rate will be limited by the number of
individuals of the other gender. Another natural hypothesis on F
is monotonicity [19], namely, if X >x and y >y, then
F(x,y) = F(x,y).

Logistic models for two-sex populations have been considered
by the academic community [2,17,19]. The model in [2] incorpo-
rates nonlinear birth and separation processes in Kendall’s
pair-formation model, while the model studied in [19] is an age-
dependent two-sex model with density dependence in the birth
and death rates. On the other hand, Rosen [17, Section 4], studied
a model which admits in (1) terms for competition:

X = byF(X,y) — (MyX + XoX* 4+ XyyXY),

2
¥ = byF(x,y) — (myy + Y,y + Yigay), @

where X, and Y, describe the effects of intrasexual competition of
females and males, respectively, and X,, and Y,, characterize the
intersexual competition of males on females and females on males,
respectively. Furthermore, [17] considered the mating function
given by

F(x,y) = min{x, y}, 3)

where r is the average number of female sexual partners that each
male has along each reproductive cycle (r < 1 may be interpreted as
polyandrous population, r = 1 is understood as a monogamous pop-
ulation, and r > 1 may be seen as a polygynous population).

We recall that models like (1) and (2) do not inspect in an expli-
cit way certain internal mechanisms of the populations, like pair
formation or age structure. In fact, such mechanisms are captured
by the parameters of the models. Consider, for example, a popula-
tion of a total of m males and f females of which m males are sex-
ually active and f females are receptive and each one of them has
fertility rate S. Suppose further that each sexually active male suc-
cessfully breeds with 7 females. In such a case, these models will
interpret that all the males successfully breeds with r = (mr)/m
females and all the females are receptive (each one of them with
fertility rate s), so the net number of individuals being born and
the magnitude of competitions will be virtually the same and the
models will reveal the behavior of the population growth. Notice
that competition for mating is not focused by these models, since
it is part of the pair formation mechanism and in general it does
not affect the mortality rate. Besides, since the parameters rand
sabsorb the age structure and pair formation, the sex-ratio type
considered in the models is the tertiary sex ratio (the number of
adult males divided by the number of adult females - also named
adult sex ratio), which, when adopting such a point of view, is
indistinguishable from the operational sex ratio (the number of
sexually active males divided by the number of receptive females).

Note that competition terms of the form xy in the above equa-
tions may not capture some aspects of the relationship between
the genders. In fact, although for predator-prey models it is rea-
sonable to suppose that a great number of predators or prey will
increase the probability of interactions between the species and
then the population growth of both species will be affected by
the quantity xy, this interpretation does not necessarily hold for
two-sex populations, in which one of the genders is not a vital
resource but in general both genders coexist and have common
resources. The causes and consequences of adult sex ratio and
operational sex ratio have been extensively investigated by biolo-
gists. There are pieces of evidence that the sex ratio has an impact
on fitness prospects of males and females and on optimal sex allo-
cation decisions [15]. It was noticed that a male-biased sex ratio
could amplify male-male competition with negative impact on
female survival and fecundity (see, for instance, [5,8]). The excess
of males against females has also been pointed out as a likely neg-
ative factor for females in the human case [11]. In other words,
when y is much greater than x, even if xy is small, one may detect
a negative impact on the xpopulation.

These facts lead us to incorporate in Eq. (2) a mortality term for
each gender which takes into account the ratio between the gen-
ders on the intersexual competitions. More precisely, we remark
that the mortality rates are usually expressed per capita, which
means that they are of the form M(x,y)x for the female population
and N(x,y)y for the male population, where Mand N are given func-
tions. For example, in (1) we realize that Mand N are identically
constant functions, while in (2) we have M(x,y) = my + XX + Xy
and N(x,y) = m, + Y,y + Y, x. The phenomena reported in the pre-
vious paragraph suggest that this modeling should be reevaluated
in situations far from gender equilibrium, namely, when xand yare
not near each other. Actually, those biological observations pro-
pose for consideration an extension of (2) with additional terms
that reflect the stress on a population of a certain gender due to
a population bias for the other gender. This particular kind of
impact on the morality rates may be integrated into the model
by supposing that intersexual competitions have components that
dependent on the sex ratio. Formally, the function M is supposed to
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