
On the derivation of approximations to cellular automata models and
the assumption of independence

K.J. Davies ⇑, J.E.F. Green, N.G. Bean, B.J. Binder, J.V. Ross
School of Mathematical Sciences, University of Adelaide, South Australia, Australia

a r t i c l e i n f o

Article history:
Received 15 November 2013
Received in revised form 10 April 2014
Accepted 15 April 2014
Available online 24 April 2014

Keywords:
Cellular automata
Continuum approximations
Agent-based simulation
Motility and proliferation

a b s t r a c t

Cellular automata are discrete agent-based models, generally used in cell-based applications. There is
much interest in obtaining continuum models that describe the mean behaviour of the agents in these
models. Previously, continuum models have been derived for agents undergoing motility and prolifera-
tion processes, however, these models only hold under restricted conditions. In order to narrow down
the reason for these restrictions, we explore three possible sources of error in deriving the model. These
sources are the choice of limiting arguments, the use of a discrete-time model as opposed to a continu-
ous-time model and the assumption of independence between the state of sites. We present a rigorous
analysis in order to gain a greater understanding of the significance of these three issues. By finding a lim-
iting regime that accurately approximates the conservation equation for the cellular automata, we are
able to conclude that the inaccuracy between our approximation and the cellular automata is completely
based on the assumption of independence.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Cellular automata (CA) are discrete agent-based mathematical
models that allow for an individual agent’s behaviour to depend
upon the state of its neighbourhood. As such they are often an ideal
tool for modelling discrete systems composed of interacting indi-
viduals. A discipline in which they have seen widespread
use is cell biology, where they have been used, for example, to
model and understand processes such as tissue and tumour growth
[5,16,17,24,26], and wound healing [8,19]. We focus herein on CA
models appropriate for such applications, in which the biological
processes are cell motility and cell proliferation.

As the cell biological processes that we seek to understand are
likely to be evolving continuously in time, we believe a
continuous-time model to be most appropriate. However, the
literature extensively considers discrete-time CA models
[1,4–6,11,18,22,23], in particular when deriving approximations
to the average behaviour of these processes, and so we begin our
analysis with discrete-time CA models in Section 2 before
considering continuous-time CA models in Section 3.

Of much interest from both a practical and theoretical perspec-
tive, is the derivation of approximations which capture the average

behaviour of the CA. Such continuum models might allow for new
insight and understanding of these important biological processes.
It has been shown by numerical experiments that these continuum
approximations are only valid under restrictive conditions on
the probabilities of cell movement and proliferation (that is, where
cell movement dominates cell proliferation) [22], limiting
the range of scenarios and applications which may be considered
[2,4,7,15,18,22].

A careful analysis of the development of existing continuum
approximations is undertaken in this paper. This gives insight into
the implicit assumptions regarding the magnitudes of the motility
and proliferation probabilities which underlie their derivation, and
shows how new approximations can be developed when these
assumptions are relaxed.

We show that the assumption of independence between
the state of different sites in the CA is a key issue with
regards to the inaccuracy of existing continuum approxima-
tions, so long as proliferation is present; and that, when there
is no proliferation, the approximation obtained by assuming
independence is identical to that found when the independence
assumption is relaxed. However, the earlier continuum models
are shown to perform unexpectedly well in approximating
the behaviour of the CA even when proliferation is included.
We show that this is largely due to a fortuitous cancellation
of errors.
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2. Discrete-time CA model

2.1. Defining the model

We begin by introducing our one-dimensional CA model. The
model is a lattice-based system in which each site on the lattice
is in one of two states: occupied or vacant. Each occupied site con-
tains an agent whose behaviour is determined by some process.
Two processes will be considered in our model, motility and
proliferation.

We say that the cell size and hence the lattice spacing is Dx, and
so the position of the ith lattice site is xi ¼ iDx for i ¼ 1;2; . . . ;X. For
simplicity, we use periodic boundary conditions, resulting in a con-
nection between site 1 and site X. We define a time step Dt and
consider the state of the process at discrete times tk ¼ kDt for
k ¼ 0;1; . . ..

Consider an agent at site i on the lattice who is to undergo a
motility or proliferation event. In both cases, an adjacent site is
chosen uniformly at random, that is, site i� 1 or site iþ 1. If the
adjacent site is vacant then the event will be carried out, otherwise
the event will be aborted [9]. In the case of motility, the agent will
move from site i to the new site, resulting in site i becoming unoc-
cupied and the new site becoming occupied. In the case of prolifer-
ation, both the new site and site i will become occupied.

There are many ways in which these events can and have been
implemented, [3,12,22,23,25,26]. Each of these different imple-
mentations can produce different average results, although in most
cases the differences in the average CA data are minor. For exam-
ple, in many of these models, the order in which events take place
in the model is arbitrarily chosen, unmotivated or in some cases
not made clear. The importance of this will be discussed in greater
detail in Section 3.1.

For the purposes of comparison, we use the following imple-
mentation as outlined in Simpson et al. [22]. We choose 2NðtkÞ
agents uniformly at random with replacement, where NðtkÞ is the
number of agents in the system at time tk. The first NðtkÞ agents
are each given the opportunity to perform a motility event. The
probability of each agent performing the event is Pm. If the motility
event is aborted, this is still regarded as an event taking place (and
similarly for proliferation events). The remaining NðtkÞ agents are
then given the opportunity to perform a proliferation event, each
with probability Pp. The time step is completed by moving from
tk to tkþ1 and this procedure is repeated. A realisation of the model
can be seen in Fig. 1.

In order to analyse the mean behaviour of the system described
above we consider the ensemble average occupancy at position xi

at time tk, denoted Ck
i . This value can be calculated numerically

by averaging the occupancy over many realisations of the CA sys-
tem. This allows us to easily validate the results obtained when
deriving continuum approximations.

2.2. Deriving a continuum approximation

We aim to derive a partial differential equation (PDE) for the
ensemble average occupancy. However, it is axiomatic that a con-
tinuous PDE model is only likely to provide a reasonable approxi-
mation of the discrete system when large numbers of agents are
present, and the average occupancy of sites varies over length
and time scales which are much larger than the agent size (Dx)
and time step (Dt). In order to derive a continuum model, we must
hence identify these characteristic macroscopic length and time
scales for the system [14]. For the length scale, denoted L, it would
be natural to take the size of the region of the domain initially
occupied by cells whilst for the time scale, denoted T, it could nat-
urally be the population doubling time or the average time taken
for a cell to move a distance L.

We wish to approximate the ensemble average occupancy,
Ck

i , of the CA model with the continuous function Cðx; tÞ, such
that Ck

i � Cðxi; tkÞ, where xi ¼ iDx and tk ¼ kDt, and desire that
this provides a reasonable approximation when the occupancy
varies over the macroscopic scales. We hence assume that the
ratios of the micro- and macroscopic length and time scales
are small, i.e.

� ¼ Dx
L
� 1; d ¼ Dt

T
� 1;

and exploit this separation of scales to derive the PDE model.
We now consider the change in the ensemble average occu-

pancy of site i;Ck
i , from time tk to time tkþ1. Assuming that the state

of each lattice site is independent of the state of every other lattice
site, we obtain the following discrete conservation equation
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where i ¼ 1; . . . ;X and HoT denotes higher order terms.

Eq. (2.1) says that the new average occupancy of each site will
be the old average occupancy plus some terms that describe the
change over that time step. It is derived by considering all different
possible transitions into and out of site i. Consider, specifically,
deriving the probability of an agent at site i� 1 moving to site i.
An agent has a probability of motility Pm and has probability of
1=2 of moving in a given direction. Further, Ck

i�1 is the probability
of site i� 1 being occupied at time tk and ð1� Ck

i Þ is the probability
of site i being vacant at time tk. The term Pm

2 Ck
i�1ð1� Ck

i Þ can be
obtained by assuming independence between sites and taking
the product of each of these probabilities.
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Fig. 1. A single realisation of the CA model progressing with time. Each row (from top to bottom) corresponds to k ¼ 0;1000;3000;5000 where k is the number of time steps
since the start of the realisation. This process is purely proliferation, with Pm ¼ 0 and Pp ¼ 1=200. This realisation contains X ¼ 50 sites of which 11 are initially occupied by
agents.
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