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a b s t r a c t

In recent decades, dengue fever and dengue haemorrhagic fever have become a substantial public health
concern in many subtropical and tropical countries throughout the world. Many of these regions have
strong seasonal patterns in rainfall and temperature which are directly linked to the transmission of
dengue through the mosquito vector population. Our study focuses on the development and analysis
of a strongly seasonally forced, multi-subclass dengue model. This model is a compartment-based system
of first-order ordinary differential equations with seasonal forcing in the vector population and also
includes host population demographics. Our analysis of this model focuses particularly on the existence
of deterministic chaos in regions of the parameter space which potentially hinders application of the
model to predict and understand future outbreaks. The numerically efficient 0–1 test for deterministic
chaos suggested by Gottwald and Melbourne (2004) [18] is used to analyze the long-term behaviour
of the model as an alternative to Lyapunov exponents. Various solutions types were found to exist within
the studied parameter range. Most notable are the existence of isola n-cycle solutions before the onset of
deterministic chaos. Analysis of the seasonal model with the 0–1 test revealed the existence of three dis-
connected regions in parameter space where deterministic chaos exists in the single subclass model.
Knowledge of these regions and how they relate to the parameters of the model gives greater confidence
in the predictive power of the seasonal model.

Crown Copyright � 2013 Published by Elsevier Inc. All rights reserved.

1. Introduction

Dengue is a mosquito-borne virus that poses a growing world-
wide threat [1]. The principle vector of dengue is the mosquito
Aedes aegypti. The A. aegypti vector prefers artificial water contain-
ers such as pots, rain-water containers and discarded tyres for its
breeding sites. Hatching typically occurs during wet periods, most
likely after periods of rainfall when breeding sites are most suit-
able [2]. The sensitivity of A. aegypti populations, and hence the
transmission of dengue, to ecological factors such as temperature
and rainfall is well documented [3,4]. In many tropical countries,
the seasonal variations of rainfall and temperature gives rise to
seasonal patterns in the reported outbreaks of dengue fever [5].
This effect is particularly noticeable in regions that have distinct
wet seasons such as North Queensland, Australia [6], Puerto Rico
[7] and Thailand [5].

In the recent decade, a variety of mathematical models have
been developed to study the irregular seasonal patterns in dengue
epidemics that occur throughout the world (for example, [8–14]).
This paper investigates a multiple subclass seasonal dengue model,

motivated by Chowell et al. [15]. Our model differs from many sea-
sonal models by including the dynamics of the vector population,
incorporating seasonal forcing through a periodic variation as in
Bacaër et al. [16], and through the use of multiple subclasses to rep-
licate the dynamics of dengue incubation and infectious periods. As
demonstrated by Kuznetsov et al. [17], the inclusion of seasonal
forcing in an Susceptible, Infective, Recovered (SIR) type compart-
ment model gives rise to parameter regions within which
deterministic chaos is possible. For the purpose of using a model
to predict and understand disease transmission, the existence of
deterministic chaos in the model makes the application of the
model within certain parameter regions less useful. Regardless of
the limitations imposed by deterministic chaos, seasonally forced
models are essential should any forecast be desired in regions
where there is a strong seasonal nature to the mosquito population.

Of interest here is the long-term dynamics of the model and the
type of behaviour that is possible. We use bifurcation analysis to
study solution dynamics under parameter variations. Our bifurca-
tion analysis quantifies the long-term solution dynamics within
the parameter space into steady-state solutions, periodic solutions
and non-periodic solutions. For non-periodic solutions, the solu-
tion type is classified through the application of the numerically
efficient 0–1 test for deterministic chaos [18,19]. The 0–1 test is
an alternative method to using Lyapunov exponents and produces
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a binary output for a given time series data without the need for QR
decomposition. This output is either near 1 which indicates the
presence of deterministic chaos or near 0 otherwise. We investi-
gate the regions of parameter space within which deterministic
chaos exists for our model in addition to the various long-term
solution dynamics that arise. Ascertaining where in parameter
space chaotic solutions are present and quantifying the types of
complex behaviour that is possible allows for the confident use
of our model when investigating possible future dengue outbreaks.
This paper lays the groundwork for future studies that extend this
model by the inclusion of multiple strains and an explicit depen-
dence of the vector population on ecological factors such as tem-
perature and rainfall.

2. A seasonal dengue model

The sensitivity of mosquito populations and the transmission of
mosquito-borne pathogens to both temperature and hydrologic
variability is a well established fact [3]. Various independent stud-
ies have confirmed the A. aegypti population dependence with
respect to rainfall [20] and temperature [4,21]. Many tropical re-
gions in the world experience marked variation in temperature
and rainfall with distinct wet and dry seasons. For example, far
North Queensland, Australia experiences heavy rainfall during
summer months and almost negligible rainfall during winter
months [22] as is evident in Fig. 1. Similar patterns in climate sea-
sonality with noticeable wet seasons are encountered in regions
such as Puerto Rico [7], Indonesia [23] and Thailand [5]. This strong
seasonality has a dramatic impact on the mosquito population in
these climate zones and hence a seasonal forcing is required to
properly implement the climate dependent population dynamics
of the A. aegypti vector. Our mathematical model in this paper ad-
vances upon the work previously undertaken by [15] by including
demographics in the host population and introducing a seasonal
forcing to the female A. aegypti population. The aim here is to
provide a model that has similar dynamics to the dengue outbreak
data encountered within regions such as Queensland, Australia
(Population: 4,659,000 as of June 2013) as shown in Fig. 2. The
Queensland data generally has small seasonal peaks with

occasional large peaks. Outbreaks are not endemic and recede each
year during the dry season.

To represent the known characteristics of dengue incubation
and infective periods in both human host and mosquito vector, a
multi-subclass model will be used. Following directly from [15],
this model introduces eh incubation subclasses in the exposed host
population ðEh1 ; Eh2 ; . . . ; Eheh

Þ; ev subclasses in the exposed vector

population ðEv1 ; Ev2 ; . . . ; Evev Þ and ih infectious subclasses in the
host population ðIh1 ; Ih2 ; . . . ; Ihih

Þ. The rates of progression between

the subclasses are given by ehkh and evkv for the incubation periods
of the human and mosquito population, respectively and ihch for
the infectious period in humans. Using multiple subclasses results
in the infectious and incubation periods being gamma distributed
[25,26] with means 1=kv ;1=kh and 1=ch for the incubation and
infectious periods, respectively and the corresponding variances

of the gamma distributions are given by 1=ðevk2
v Þ;1=ðehk2

hÞ and
1=ðihc2

hÞ, respectively. Our multi-subclass dengue model with sea-
sonality and demographics is given by the following system of
ð4þ eh þ ev þ ihÞ first-order differential equations for the popula-
tion in each compartment:

_Sh tð Þ ¼ lhNh tð Þ � ðlh þ kvðtÞÞSh tð Þ;
_Eh1

tð Þ ¼ kv tð ÞSh tð Þ � ðkheh þ lhÞEh tð Þ;
_Ehj

tð Þ ¼ khehEhj�1
tð Þ � ðkheh þ lhÞEhj

tð Þ; 2 6 j 6 eh;

_Ih1 tð Þ ¼ khehEheh
tð Þ � ðchih þ lhÞIh1 tð Þ;

_Ihj
tð Þ ¼ chihIhj�1

tð Þ � ðchih þ lhÞIhj
tð Þ; 2 6 j 6 ih;

_Rh tð Þ ¼ chihIhih
� lhRh tð Þ;

_Sv tð Þ ¼ lvnv tð Þ � ðlv þ khðtÞÞSv tð Þ;
_Ev1 tð Þ ¼ kh tð ÞSv tð Þ � kvev þ lv

� �
Ev1 tð Þ;

_Ev j
tð Þ ¼ kvevEv j�1

tð Þ � kvev þ lv
� �

Ev j
tð Þ; 2 6 j 6 ev ;

_Iv tð Þ ¼ kvevEvev tð Þ � lv Iv tð Þ;

ð1Þ

where kh tð Þ ¼ Cbvh

Peh
j¼1

Ihj
tð Þ

Nh tð Þ and kv tð Þ ¼ Cbhv
Iv tð Þ
Nh tð Þ. The total human

population is given by Nh tð Þ ¼ Sh tð Þ þ
Peh

j¼1Ehj
tð Þ þ

Pih
j¼1Ihj

tð Þ þ Rh tð Þ
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Fig. 1. Climate data for Cairns Aero AWS, North Queensland retrieved from [22]. Left: average monthly rainfall. Right: average monthly high and low temperatures.
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