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a b s t r a c t

We propose and study a predator–prey model in which the predator has a Holling type II functional
response and generic per capita birth and death rates. Given that prey consumption provides the energy
for predator activity, and that the predator functional response represents the prey consumption rate per
predator, we assume that the per capita birth and death rates for the predator are, respectively, increasing
and decreasing functions of the predator functional response. These functions are monotonic, but not
necessarily strictly monotonic, for all values of the argument. In particular, we allow the possibility that
the predator birth rate is zero for all sufficiently small values of the predator functional response, reflect-
ing the idea that a certain level of energy intake is needed before a predator can reproduce. Our analysis
reveals that the model exhibits the behaviours typically found in predator–prey models – extinction of
the predator population, convergence to a periodic orbit, or convergence to a co-existence fixed point.
For a specific example, in which the predator birth and death rates are constant for all sufficiently small
or large values of the predator functional response, we corroborate our analysis with numerical simula-
tions. In the unlikely case where these birth and death rates equal the same constant for all sufficiently
large values of the predator functional response, the model is capable of structurally unstable behaviour,
with a small change in the initial conditions leading to a more pronounced change in the long-term
dynamics.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The first continuous-time predator–prey model was the Lotka–
Volterra model [1, p. 63]. It was proposed in the 1920s by Volterra
[2], and independently in a different context by Lotka [3], and was
subsequently named after them. It is simple to state. Indeed, if we
let N ¼ NðtÞ and P ¼ PðtÞ represent, respectively, the number or
density of prey and predators at time t P 0, then the model is:

dN
dt ¼ rN � aNP;
dP
dt ¼ vaNP � dP;

)
t > 0;

Nð0ÞP 0; Pð0ÞP 0;

9>=>; ð1Þ

where r; a;v, and d are positive constants. The terms
rN;�aNP;vaNP, and �dP can be justified by making, respectively,
assumptions (A1), (A2), (A3), and (A4), as follows:

(A1) the average prey per capita growth rate in the absence of
predation is a constant r;

(A2) the average prey consumption rate per predator, also called
the functional response of the predator or predator func-
tional response, increases linearly in the prey population N,
specifically as aN;

(A3) the average predator reproduction rate, per predator, is pro-
portional, with constant of proportionality v, to the average
prey consumption rate per predator or predator functional
response;

(A4) the average per predator death rate is a constant d.

Model (1) can be justified in other ways [4, p. 127], but our term
by term approach is perhaps the most useful in facilitating discus-
sion of its weaknesses. Clearly assumptions (A1) and (A2) are too
simple to be realistic. From (A1), the prey population would grow
without bound in the absence of the predator, which obviously
could not happen in the real world. A reasonable replacement for
assumption (A1), and one which is often made [5, pp. 94–102], is:

(B1) in the absence of predation, the prey population satisfies
logistic growth, that is, dN=dt ¼ rNð1� N=KÞ for positive
constants r;K.

From assumption (A2), the predator functional response grows
without bound in the prey population N. In other words, individual
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predators have an unlimited ability to catch and consume prey.
However, in reality, this ability will be limited, since it will take
time for a predator to capture, consume, and digest every particu-
lar food item. Therefore, whilst it may be sensible to assume that
the predator functional response is an increasing function of the
prey population N, it should not grow without bound in N but
rather saturate for N large. The simplest function which satisfies
these criteria is called the Holling type II functional response and
has the form aN=ð1þ bNÞ for positive constants a; b. The Holling
type II functional response is perhaps the most widely used pred-
ator functional response [6]. Accordingly, we replace assumption
(A2) by:

(B2) the predator functional response is an increasing yet saturat-
ing function of the prey population N, specifically taking
the form aN=ð1þ bNÞ for positive constants a; b, known as
Holling type II.

Collecting assumptions (B1), (B2), (A3), and (A4), we arrive at
the Rosenzweig–MacArthur model [5, p. 95]:

dN
dt ¼ rN 1� N

K

� �
� aNP

1þbN ;

dP
dt ¼ vaNP

1þbN � dP;

)
t > 0;

Nð0ÞP 0; Pð0ÞP 0:

9>=>; ð2Þ

The Rosenzweig–MacArthur model is certainly more realistic than
the Lotka–Volterra model, and has been gainfully employed in
many real-world applications [5, p. 46 and chapter 14]. Neverthe-
less, its underlying assumptions are open to improvement, and in
particular we now address assumptions (A3) and (A4).

Given that prey consumption fuels the activity of the predator,
it is sensible to suppose, as in assumption (A3), that the average
predator reproduction rate, per predator, is increasing in the pred-
ator functional response. However, assumption (A3) claims more
specifically that the per predator reproduction rate increases line-
arly in the predator functional response. How realistic is this?
There is empirical evidence, for some arthropod predator species,
that the birth rate per adult female (egg-laying rate) can increase
linearly in the predator functional response (rate of prey consump-
tion), across a range of small to intermediate levels of the predator
functional response [7, Figs. 10 and 13(c)]. Therefore, assuming
that the proportion of the predator population composed of
females capable of reproduction is a (time-invariant) constant f,
and that the predator functional response F remains at small to
intermediate levels, then in some circumstances the total repro-
duction rate for predators can be approximated by ðfPÞðeFÞ ¼
PðfeFÞ, where e is a positive constant, so that the predator repro-
duction rate per predator is feF, which increases linearly in the
predator functional response F. In summary, a case can be made
for assumption (A3) in some circumstances.

There are circumstances, however, in which assumption (A3) is
not so readily supportable. A certain level of energy intake is
needed before a predator can reproduce, so for all sufficiently small
values for the predator functional response, predator reproduction
will be zero rather than linearly increasing in the predator func-
tional response. Indeed, the complete cessation of breeding in
predator populations, during times of low prey density, has been
observed for various real world predator–prey systems [8, Table 1].
In addition, there is experimental evidence, for at least two arthro-
pod predator species, showing that the reproduction rate of an
adult female can reach a plateau level if its prey consumption rate
becomes sufficiently high [7, Figs. 13(a) and 13(b)]. In any event,
there will always be a limit to the rate at which an individual pred-
ator can reproduce. Hence it seems reasonable to assume that the
reproduction rate of a female predator that is capable of reproduc-
tion, if represented solely as a function of the predator functional

response F, can always be bounded above by cF for some constant
c > 0. Our remarks suggest that an improvement on assumption
(A3) can be made as follows:

(B3) the predator reproduces sexually; the proportion of preda-
tors composed of females capable of reproduction is a con-
stant f > 0; the average reproduction rate, per reproducing
female, is a function B of the predator functional response
F such that

(i) Bð0Þ ¼ 0,
(ii) for F P 0, we have 0 6 BðFÞ 6 cF for some constant c > 0,

and we also have dB=dF P 0,
(iii) dB=dF > 0 either for F 2 ½F1;1Þ where F1 is a non-negative

constant, or for F 2 ½F1; F2� where F1 and F2 are constants
with 0 6 F1 < F2.

Finally, assumption (A4) is clearly not sensible, since it claims
that the per predator death rate is independent of the predator func-
tional response. In reality, a predator will need to consume prey at
some minimal rate to avoid death by starvation or by the conse-
quences of weakness brought on by excessive hunger. As its prey
consumption rate increases from a small to intermediate value, we
might expect a predator to be healthier, and therefore less likely to
die in the near future. But provided the predator has a sufficiently
high prey consumption rate, then further increases to this rate
may have little impact on its short-term chance of death. In view
of our observations, we propose an alternative to assumption (A4):

(B4) the average per predator death rate is a function D of the
predator functional response F; for F P 0, we have
0 < dm 6 DðFÞ 6 dM where dm; dM are constants; for F P 0,
we have dD=dF 6 0.

Collecting assumptions (B1) to (B4) yields a model that has not,
to our knowledge, previously been studied. Our objective in this
paper will be to study it. Although our model is new, we are not
the first to consider breeding and mortality assumptions for preda-
tors that are more realistic than those stated, respectively, in
assumptions (A3) and (A4). For example, Kokko and Ruxton have
studied a discrete-time predator–prey model in which: (i) adult
predators and adult prey make optimal breeding decisions which
allow them to vary their brood size; (ii) the survival rate of a parent
decreases if it has more offspring to raise; and (iii) the survival rate
of offspring decreases with the number of siblings [8]. Kokko and
Ruxton found by numerical simulation that the dynamics of their
model are complex – breeding suppression in either the predator
or the prey can be either stabilising (reducing the variability of
the dynamics) or destabilising. Nakazawa et al. have considered a
continuous-time resource-consumer model, where the resource
and consumer could represent, respectively, prey and predator
populations [9]. Their model is based on these assumptions: (i)
the consumer (predator) switches from reproductive to non-repro-
ductive behaviour when the resource (prey) becomes less abun-
dant; and (ii) non-reproducing consumers (predators) have lower
mortality than reproducing ones, to represent the idea that there
is a survival cost associated with reproduction. From numerical
simulations of their model, Nakazawa et al. show (amongst other
results) that resource-dependent reproductive adjustment can sta-
bilise the dynamics. Note also that we have performed an analysis
of a continuous-time predator–prey model with variable per pred-
ator death rate in [10].

We outline the format for the rest of this paper. In Section 2, we
state our new model explicitly and comment on the positivity,
boundedness, existence, and uniqueness of solutions to it. In Sec-
tion 3, we find the fixed points of the model. The local stability
of these fixed points is investigated in Section 4. In Section 5,
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