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The timing of harvesting is a key instrument in managing and exploiting biological populations and
renewable resources. Yet, there is little theory on harvest timing, and even less is known about the impact
of different harvest times on the stability of population dynamics, even though this may drive population
variability and risk of extinction. Here, we employ the framework proposed by Seno to study how har-
vesting at specific moments in the reproductive season affects not only population size but also stability.
For populations with overcompensation, intermediate harvest times tend to be stabilizing (by simplifying

K‘?ywordS: . dynamics in the case of unimodal maps and by preventing bubbling in the case of bimodal maps). For
Discrete population model . . . - .

Stability populations with a strong Allee effect, however, intermediate harvest times can have a twofold effect.
Constant effort harvesting On the one hand, they facilitate population persistence (if harvesting effort is low). On the other hand,
Allee effect they provoke population extinction (if harvesting effort is high). Early harvesting, currently considered
Bubbling common sense to take advantage of compensatory effects, may cut into the breeding stock when the pop-
Ricker map ulation has not yet surpassed the critical Allee threshold. The results in this paper highlight, for the first

time, the crucial interplay between harvest timing and Allee effects. Moreover, they demonstrate that
harvesting with the same effort but at different moments in time can dramatically alter the impact on

the population.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The sustainable exploitation of natural resources is based on
their capability to ‘renew’ themselves [1]. Harvest and manage-
ment theory is therefore largely concerned with the population re-
sponse to the removal of individuals or resources [2]. Harvest
programmes can differ in their quota or effort, i.e. the number of
individuals or proportion of the population taken, but also in their
selectiveness by targeting certain spatial areas, sexes, or age and
size groups.

A key question of both theoretical and applied interest is the
timing of the harvest (or other forms of interventions). For exam-
ple, marine resources such as fish stocks may be protected from
overexploitation by temporary closures of fisheries. In terrestrial
ecosystems, large herbivore populations have been expanding
across Europe and North America, and they are often managed dur-
ing specified hunting seasons. Another, particularly illuminating
example are species with distinctly seasonal dynamics such as
migratory birds, which may be hunted in their wintering or breed-
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ing grounds [3]. The management of waterfowl in North America
has a long tradition and is well documented in the literature [4-
6]. One of the reasons for this research interest is the following:
If any management or harvesting programme is to take advantage
of population compensation, the timing of interventions relative to
density-dependent processes is essential [7,1,2].

A prevailing view and the usual practice in wildlife manage-
ment is that harvesting should occur after breeding and precede
periods of high natural mortality, i.e. early in the autumn [3,8].
This is because the population may compensate the removal of
individuals by increased survival (compensatory mortality) or in-
creased productivity (compensatory natality), e.g. due to less com-
petition for resources. Removing individuals early thus improves
conditions for the remaining ones and allows them to gain greater
reproductive value. Also, in cervid management harvesting juve-
niles (or males) rather than adult females is considered not only
to retain a high yield (and thus population size), but also to dam-
pen the variance in the yield (and thus population variability).
However, hunters are often reluctant to shoot juveniles (“hunting
Bambi”), and the scientific evidence is scattered (see the review
by Milner et al. [9] and references therein).

In the theoretical literature, little is known about the role of
harvest timing [10,11,7,3]. The order of harvesting in relation to
other events within the life cycle has been shown to profoundly
impact the population [12,13,7,3,1,14-16]. This points out
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the potential importance of the harvest timing. Yet, we know of
only three studies [7,17,18] that allow for variable harvest timings
at specific moments in the seasons. The mathematical models in
these references are ‘semi-discrete’ in time, that is, they couple
continuous processes with discrete events, thus giving rise to hy-
brid differential equations with periodic or impulsive functions.
Moreover, they respectively consider constant yield harvesting,
stage structure and environmental fluctuations, which further
complicate the models. Here, we employ a simple mathematical
model that has been recently proposed by Seno ([19], see also
[20,21]). It is based on a single difference equation and
yet allows to study the impact of harvest timing.

The Seno model considers constant effort harvesting (some-
times also called proportional harvesting), which is one of the most
usual strategies in fisheries [22,23] and pest control [24,19,25].
Many authors have studied the effects of constant effort harvesting
on population size in discrete-time models with overcompensatory
population dynamics; see, e.g., [26,1,14,13,3,7,27,19,23,25]. Most
of these papers focus on the paradoxical increase of population size
in response to an increasing mortality (hydra effect) [26,28].

When taking into account the harvest timing, the Seno model
predicts that compensatory effects on population size are the lar-
ger the earlier the harvesting takes place. It thus arrives at the
same conclusion as other models [7,1,3,2]. However, population
size is not the only important factor for a sustainable management
of an exploited population or for the control of a pest species. An-
other key point is the stability and degree of complexity of the sys-
tem; population fluctuations can make the population more prone
to extinction by stochastic events, especially in small populations
[29].

Although harvesting usually has a stabilizing effect on popula-
tion dynamics [30,31,13], some recent empirical studies demon-
strate the potential for increased mortality to lead to instability
in plant, insect and fish populations [32,33,25]. Also, a recent the-
oretical paper proves that instabilities as a result of increased har-
vesting effort can be explained in a one-dimensional discrete
model without considering external noise or changes in the demo-
graphic parameters, if survivorship of adults is allowed [27]. For
discrete-time models with dimension higher than one, this phe-
nomenon has been explored too; for example, the three-dimen-
sional model of the flour beetle Tribolium castaneum analyzed by
Costantino et al. [34], and the two-dimensional model employed
by Zipkin et al. [35,25]. In both cases, an increasing adult mortality
can destabilize the system. This phenomenon is linked to the
mathematical concept of bubbling; for a precise definition, see
[27, Definition 3].

An important aspect is whether the stability of the system de-
pends on the harvest timing, and how this dependence affects
the qualitative behavior of the population. In this paper, we use Se-
no’s model to show how the timing of harvesting can affect the sta-
bility properties of a population. One of the main conclusions of
our study is that an appropriate harvest timing may avoid destabi-
lizing effects in the population, and thus reduce the risk of extinc-
tion due to high variability of population size. We also pay special
attention to the role of Allee effects, which have been completely
ignored so far in this context.

2. The Seno model

Consider a discrete-time single-species population model
Xnp1 = f(Xn) = X0 8(Xn), (2.1)

where x, € [0,00) is the population size at generation n € N. and
f,g2:]0,00) — R are respectively the population production and
the per-capita production. A typical example is the unimodal Ricker

map f(x) = xe"' %, with r > 1 [36], but we will also allow for survi-
vorship of adults from one generation to the next (giving rise to bi-
modal maps) and for strong Allee effects (giving rise to multiple
equilibria).

We now introduce the harvesting model proposed by Seno (see
[19] and references therein). This model assumes that there is a
specific season of length one, in which individuals accumulate en-
ergy for reproduction. In this paper, we will use this season inter-
changeably with ‘reproductive season’. Harvesting is assumed to
take place at a moment 0 (0 < 0 < 1) within the season. Before 0,
the population production depends on x,. Then the harvesting re-
moves a fraction from the population, with y € [0, 1) being the con-
stant harvesting effort. After 0, the population production depends
on (1 — 7)x,. The population production is then assumed propor-
tional to the time period before/after harvesting. The model reads
(cf. [19, Eq. (1)]):

Xni1 = (1= 7)%: (08 (Xa) + (1 = 0)g((1 = 7)Xn))- (22)
Since f(x) = xg(x), we rewrite (2.2) as
Xner = 0(1 = P)f (%a) + (1 = O)f (1 = 7)Xa) := Fy(Xa). (23)

There are two special cases. Firstly, the case 0 = 0 means that har-
vesting occurs at the beginning of the specific season, and then
we get Fo(x) =f((1 —7)x); this case has received considerable
attention ([26,37,27,23] and references therein). Second, the case
60 =1 gives Fi(x) = (1 —y)f(x). The only difference between the
cases 0 =0 and 0 =1 is census timing [14]. Actually, if we agree
to measure the population just after reproduction, then the case
0 =1 may be identified with 0 = 0. From a mathematical point of
view, both cases exhibit the same dynamics because they are topo-
logically conjugated [27]. From a biological point of view, the pop-
ulation dynamics results from the composition of only two separate
processes (i.e., harvesting and reproduction), and any difference in
population size only depends on when the population is sampled
[12].

However, for the mathematical analysis, it is useful to have in
mind the case 0 = 1 and to realize that every particular choice of
Fy is a convex combination of Fy and F;:

Fo(x) = OF; (x) + (1 — 0)Fo(x). (2.4)

Our main aim in this paper is to study how the harvesting time
parameter 0 affects the dynamics of model (2.3).

3. Compensatory models

In this section, we assume that f(x) = xg(x), where g is continu-
ously differentiable and satisfies the following conditions:

(i) g(x) < 0 for all x > 0.
(ii) g(0) > 1.
(iii) limy_..gx) =6 < 1.

Conditions (i)—(iii) are typical of single-species models with contest
and scramble competition [38] and lead to under- and overcompen-
sating stock-recruitment curves, respectively [22].

Our first observation is that overharvesting provokes extinction.
The critical value of the harvesting effort y is independent of the
timing 6.

Proposition 3.1. Assume that conditions (i)—(iii) hold. Then Eq. (2.3)
has a (unique) positive equilibrium if and only if

. 1
P <y .71—m. (3.1)

If y = 7, then all solutions of (2.3) converge to zero.
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