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a b s t r a c t

In this paper we analyse a two-strain compartmental dengue fever model that allows us to study the
behaviour of a Dengue fever epidemic. Dengue fever is the most common mosquito-borne viral disease
of humans that in recent years has become a major international public health concern. The model is an
extension of the classical compartmental susceptible–infected–recovered (SIR) model where the
exchange between the compartments is described by ordinary differential equations (ODE). Two-strains
of the virus exist so that a primary infection with one strain and secondary infection by the other strain
can occur. There is life-long immunity to the primary infection strain, temporary cross-immunity and
after the secondary infection followed by life-long immunity, to the secondary infection strains. New-
borns are assumed susceptible. Antibody Dependent Enhancement (ADE) is a mechanism where the
pre-existing antibodies to the previous dengue infection do not neutralize but rather enhance replication
of the secondary strain. In the previously studied models the two strains are identical with respect to
their epidemiological functioning: that is the epidemiological process parameters of the two strains were
assumed equal. As a result the mathematical model possesses a mathematical symmetry property. In this
manuscript we study a variant with epidemiological asymmetry between the strains: the force of infec-
tion rates differ while all other epidemiological parameters are equal. Comparison with the results for the
epidemiologically symmetric model gives insight into its robustness. Numerical bifurcation analysis and
simulation techniques including Lyapunov exponent calculation will be used to study the long-term
dynamical behaviour of the model. For the single strain system stable endemic equilibria exist and for
the two-strain system endemic equilibria, periodic solutions and also chaotic behaviour.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Dengue is a human disease common in tropical and subtropical
regions of the world. It is a vector-born disease transmitted via
specific mosquitoes. Two variants of the disease exist: dengue fe-
ver (DF), a non-fatal form of illness, and dengue hemorrhagic fever
(DHF), which may evolve toward a severe form known as dengue
shock syndrome (DSS). Antibody Dependent Enhancement (ADE) oc-
curs when cross-reactive antibodies generated by a previous expo-
sure to a heterologous strain facilitate the within-host replication
of a second invading strain. Epidemiological studies support the
association of DHF with secondary dengue infection due to ADE.
The dynamics multi-strain epidemic models for dengue fever were
analysed in [13,10,1,30,9,4,26,8,3,20]. In all of these models the
dynamics of the vector is not included. These multi-strain models
are extensions of the classical SIR-model. The population is divided
into classes (or compartments) concerning the disease related
stages (susceptibles, infected and recovered). The fraction or per-
centage of the different classes are the state variables of the set

of ordinary differential equations (ODE)’s which describe the
temporal exchange between the compartments. In order to de-
scribe differences between primary infections, which are often
asymptomatic, and secondary infection, associated with the
severe form of the disease (DHF or DSS) either of which may be
life-threatening, compartments for at least two different strains
were needed. In the models formulated and analysed in these
papers ADE is always taken into account in combination with co-infec-
tion in [13] and with temporary cross-immunity in [30,4,8,4,3,17].

The ADE-factor / is defined as the ratio of the secondary infec-
tion contribution to the force of infection. Then for / > 1 there is
an enhancement of the infectiousness by the secondary infection
strain with respect to the infectiousness of the primary infection
strain and reduction when / < 1. In the majority of the papers
enhancement of viral replication due to ADE is modeled as also an
enhancement of mass action contacts in the secondary infectious
rate. And therefore ADE-effects on the long-term dynamics are only
studied for / P 1. Much of this work has suggested that the
dynamics resulting from incorporating enhancement are inconsis-
tent with observed patterns of incidence, with oscillation ampli-
tudes in incidence that are much too large and periods that are
much too long (see [24]) while large amplitudes entail stochastic
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extinction. Hospitalization of individuals (DHF cases) will lead to a
smaller contribution to the force of infection see [4,3] and not a lar-
ger contribution. In [4,5,3,6] is was shown that for / 6 1 there is
complex dynamics behaviour that is consistent with observed pat-
terns of incidence and that the origin of complex structure is a
torus bifurcation of a stable limit cycle where no large amplitudes
occur. Therefore we focus here on the interval / 2 ½0;1:3�.

The mathematical models described by ODE’s are analysed using
bifurcation theory (see [16,32,21] and references therein). The
equilibrium equations are analysed using the symbolic computa-
tion program Maple [22]. For the study of the long-term dynamics
of these high-dimensional, complicated models we use numerical
bifurcation analysis using computer-packages such as AUTO [12]
and MatCont [11]. With these computer-packages one can calcu-
late and continue bifurcation points for equilibria and periodic
solutions, but not when the solution is aperiodic (quasi-periodic
or chaotic). Bifurcation points are critical parameter values where
the long-term dynamics changes qualitatively, for instance from
a stable equilibrium to a limit cycle. To study aperiodic solutions,
simulations followed by Lyapunov exponent calculations are
needed. The maximum Lyapunov exponent measures the rate of
convergence or divergence of nearby trajectories and quantify
chaos. The algorithm we use is described in [3].

To be able to perform the numerical analysis we have to assign
values to the parameters. We use parameter values which are real-
istic for dengue fever [4,5,3,6] given in Table 1, if not otherwise
explicitly stated. To assess the sensitivity of the long-term dynam-
ics with respect to the parameters, the results are presented in
bifurcation diagrams where model parameters are varied along
the axes. In a one parameter diagram the long-term solution of
one state variable is plotted as a function of a free (bifurcation)
parameter. Observe that since the dimension of the system is high
(9 in our case) this plot is a projection onto the coordinate plane of
the state space belonging to the specific state variable. In a two
parameter diagram two parameters are varied simultaneously
and no quantitative information about the state variables is pro-
vided, only a qualitative characterization of the long-term dynamic
behaviour, such as steady state, periodic solution, quasi-periodic
solution or chaotic dynamics. Since the dimension of the system
is high, multiple solutions occur and this complicates the analysis
since then also the initial conditions become important because
they fix to which attractor the system converges.

When all parameters are equal for all strains, the model is epi-
demiologically symmetric. The main aim of this paper is to study
the effects of asymmetry. To that end we introduce a perturbation
parameter that describes the difference between the strains,
namely difference in the infection rates, while all other parameters
are still the same. In the past effects of asymmetry in transmission
rates between the strains has been not been studied systemati-

cally. Recently this was done in [24] in conjunction with the value
of the ADE-factor / P 1.

Only in [4,3,20] and other papers by Aguiar and collaborators, it
was recognized that with epidemiological symmetry with exact
equal parameter values for all strains, implies that the mathemat-
ical model possesses Z2 symmetry properties. These properties al-
low for a classification of the possible long-term dynamical
behaviours, see for instance [21,4,3,20].

The Z2 symmetry leads to specific properties of equilibria and
limit cycles with relationships between the state variables related
to the two strains, but also to a pair of conjugate limit cycles and
moreover to specific bifurcations such as a pitchfork bifurcation
(see [21]). It is, however, well know that a pitchfork bifurcation
is structurally unstable, that is, small perturbations imposing
asymmetry, alter abruptly the qualitative behaviour of the bifurca-
tion pattern. Therefore, it is interesting to study the robustness of
this epidemiological symmetric dynamics with respect to an intro-
duction of asymmetry.

It turns out that from an application point of view, the bifurca-
tion pattern is robust for small values of the symmetry perturba-
tion parameter except in the parameter region very close to a
pitchfork bifurcation. For larger asymmetries the change in the
pattern increases drastically in some situations leading to extinc-
tion of one of the strains while with identical epidemiological
strains there is always coexistence for the reference parameter
values given in Table 1.

2. Formulation of the two-strain epidemic model with
temporary cross-immunity

Starting point for our study is the model formulated in [4] and
analysed in [4,3,20]. The model divides the host population into
susceptible, infected and recovered classes denoted by S; I and R
with subscripts for respective the primary and secondary infection.
The population size is constant because the birth and death rates of
the human host population are assumed to be equal and further-
more newborns are susceptibles. There is life-long immunity for
the strain of the primary infection. After a cross-immunity period
individuals get infected for the second time by a different strain
and thereafter there is life-long immunity to all strains. In this
model the two virus strains are, from the epidemiologically point
of view, identical: all parameters have the same values for the dif-
ferent strains. This allows for two different interpretations of the
classes (susceptible, infected and recovered) associated with the
two strains.

In the first framework there are only two strains (as was for
dengue fever the case in the past and nowadays still in some re-
gions of the world). So, either the individuals are infected by one
specific strain and life-long immune for this strain or are infected
thereafter by the other strain. We label the infected classes by
those strains the individuals have previously been infected.

In the second framework, there are four strains (as is often the
case now for dengue fever) and the individuals are primarily in-
fected by one of the four strains or are secondarily infected by
one of the other three strains. Only two classes are distinguished.
We label classes as first infected by one of the four strains. Individ-
uals in the secondary infected class are those that were first in-
fected by one of the other three strains. In this formulation an
additional assumption is that tertiary and quaternary infections
do not occur. Epidemiological data shows them to be quite rare,
[14].

The latter framework was used in [4,3]. When the four strains
are epidemiological identical it is reasonable that primarily and
secondarily infected are lumped separately. Here the same inter-
pretation is also valid when one strain differs considerably from

Table 1
Parameter set, rates given in units per year, ratio’s without units. Since we take
N ¼ 100, the fractions of the classes are expressed in percentages. In [13,9]
enhancement of mass action contacts in the secondarily infected: / > 1 and in
[4,5,3], decrease of the infectivity of secondarily infected due to hospitalization:
/ < 1. Perturbation parameter 0 6 e 6 2c is used to study the effects of asymmetry of
the infection rates bi : bi ¼ b� e; i ¼ 1;2.

Par. Description Values Ref

N Population size 100 –
a Temporary cross-immunity rate 2 y�1 [25]
b Ref. infection rate 2c [13]
c Recovery rate 52 y�1 [31,15]
l New born susceptible rate 1=65 y�1 –
/ Ratio of contrib. to force of inf. Variable –
e Asymmetry perturbation parameter Variable –
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