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Many mathematical models in biology and physiology are represented by systems of nonlinear differen-
tial equations. In recent years these models have become increasingly complex in order to explain the
enormous volume of data now available. A key role of modellers is to determine which components of
the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling
this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary
differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010)
44-52]. In this paper we extend this model reduction technique for application to both steady-state and
time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used
to demonstrate the applicability of the technique.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Simplification of mathematical models to identify the underly-
ing mechanisms responsible for an observed behaviour is an inte-
gral component of mathematical modelling. This simplification
often leads to reduced models that demonstrate key features with
greater clarity. Using an example from the field of cell-level elec-
trophysiology, the FitzHugh-Nagumo model was developed inde-
pendently by both Fitzhugh [1] and Nagumo et al. [2] as a result
of a perturbation analysis of the Hodgkin-Huxley equations [3]
and allows a clear exposition of the property of excitability.

In recent years mathematical models in biology have become
increasingly complex. Such models are often described by systems
of differential equations that contain tens or hundreds of variables
and parameters, several different types of differential operator
[4-7], and describe processes that act across a wide range of spatial
and temporal scales [8]. Perturbation methods, also known as
asymptotic methods, are one family of techniques that may be
used to simplify these models and identify the dominant terms
in these equations that cause a given output. Applying these
methods to a system of differential equations is, however, time-
consuming and requires substantial mathematical expertise. Fur-
thermore the difficulty of applying perturbation methods increases
significantly with the number of equations and parameters in the
system. The application of perturbation methods to mathematical
models in biology has generally focused on systems of initial value
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ordinary differential equations where the system of differential
equations takes a specific form or models a specific phenomena.
One example of this approach is the work by Segel and Slemrod
[9], who considered systems of equations that model chemical
reactions. The different rates at which the reactions occur were uti-
lised to generate a quasi-steady state assumption for some vari-
ables. Other examples of perturbation analysis being used to
elucidate the important detail from systems biology models in-
clude approximations of a cardiac electrophysiology model [10],
a comparison of the excitability properties exhibited by models
of cardiac and nerve electrophysiology [11], a Calcium-Induced
Calcium Release (CICR) model [12], and an NF-kB signalling model
[13]. In a similar spirit, Maas and Pope [14] use a dynamical sys-
tems approach to automatically simplify systems of initial value
ordinary differential equations that model chemical kinetics, Voit
and Ferreira [15] propose simple models of chemical buffers that
are demonstrated to stabilise the behaviour of other system vari-
ables, and Cha et al. [16] and Kepler et al. [17] have simplified mod-
els of excitability by replacing the differential equations modelling
gating variables by algebraic equations.

One alternative, commonly used tool for the analysis of com-
plex mathematical models is sensitivity analysis. Sensitivity analy-
sis studies will often set out to answer the question, “Which
parameter values in the model equations have the greatest effect
on a model output of interest?”. Answering this question is impor-
tant for deciding which parameters in a model need to be accu-
rately estimated, and also for predicting how system behaviour
will change in response to different interventions. A closely related
question that model analysis will often set out to answer is,
“Which physical processes in the model equations have the
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greatest effect on a model output of interest?”. Whereas sensitivity
analysis methods [18-29] are more suited to answering the first
question, an alternative method developed in this paper aims to
answer the second one.

Model reduction using a posteriori analysis, the subject of this
study, is an automated method for identifying key components of
a mathematical model that affect a user-defined quantity of inter-
est. This method borrows ideas from a posteriori error analysis of a
finite element solution of a system of differential equations.
Whereas a posteriori error analysis for finite element methods is
used to construct a suitably accurate numerical discretisation of
the differential operator by indicating regions of the computational
domain where the finite element mesh needs to be made finer [30-
33], model reduction using a posteriori analysis is used to construct
a reduced system of differential equations that is sufficiently accu-
rate to approximate the full system of equations. A posteriori model
reduction has been applied to coupled nonlinear systems of initial
value ordinary differential equations [34] to identify the key terms
in the equations that are responsible for a specified output of the
system. This is similar to the approach described by Clewley
et al. [35] for initial value ordinary differential equations where
all terms appearing in the equations are ranked in terms of their
magnitude during each partition of time. Terms whose magnitude
is smaller than some prescribed fraction of the term with largest
magnitude are neglected in the reduced model. This approach
has several advantages: for example it is intuitive and easy to
implement. It does, however, neglect to take account of how a term
that is small in some time interval may subsequently cause a sig-
nificant effect on the solution at later times. This algorithm has
been applied successfully to several problems exhibiting bursting
and spiking behaviour [36-38] and has been shown to be compat-
ible with the PyDSTool software environment [39].

The aim of this paper is to develop the a posteriori model reduc-
tion technique so that it can be applied to a wider range of differ-
ential equations than in previous work [34]. The idea underpinning
this technique is fairly simple: this idea is presented for the case of
a general differential equation in Section 2. In Section 3 we extend
the methodology so that it may be applied to models described by
boundary-value second order ordinary differential equations. In
Section 4 we extend the methodology further so that it may be
applied to systems of parabolic partial differential equations in
one spatial dimension such as time-dependent reaction-diffusion
equations.

2. Overview of the method

We first give an overview of the method in sketch form: a more
rigorous and technical description will be given later. Given an out-
put from the model, in the form of a linear functional of the solu-
tion, the aim of the method is to distinguish between regions of the
computational domain where the full system of equations must be
solved, and other regions where an approximate, simpler system is
adequate. By “approximate, simpler system” we mean a simpler
differential equation that approximates the original differential
equation, and not a numerical approximation to the differential
equation. The purpose of making such an approximation is not to
create a more accurate or more computationally efficient scheme
for obtaining a numerical solution. Rather, it is to identify the
regions of the computational domain, and the components of the
model, that have the greatest impact on some user-defined
quantity of interest. We should emphasise that the reduced model
generated is for a given user-defined output. Different outputs will
be dependent on different physical mechanisms, and may there-
fore be described by a different reduced model.

Suppose the full model of the system is defined as,

Du=p, (1)

where D is a differential operator, including all necessary initial and
boundary conditions, u(x) is the solution to the differential equa-
tion, and p(x) is independent of u. We define the approximate sys-
tem by

DU =p,

where D is an approximation to the differential operator D, and U is
the solution to this reduced differential equation. Suppose we have
a user-defined quantity of interest that may be written as a linear
functional of the solution u, i.e.,

Jw) = (u,8),

where (u,g) denotes an inner product between u and g. The key
concept that underpins this model reduction technique is the ad-
joint differential equation to the original differential equation. An
appropriate adjoint problem is: find ¢ such that

D'p=g. (2)
This definition of the adjoint problem allows us to write

Jw) -JU) =u-U.g)

=(u-U"D¢) (3)
= (Du - DU, ¢) for an appropriately chosen D* (4)
=(p-DU,¢)

=

R(U), ¢), )

where R(U) is defined by p — DU, and is the residual obtained when
the solution to the reduced model U is substituted into the full mod-
el given by Eq. (1). Details on how to construct the adjoint problem
are given later in this paper.

Our a posteriori model reduction technique is based on the fol-
lowing observation. Clearly if U (the solution of the approximate
system of differential equations) is a good approximation to u
(the solution of the full system of differential equations) for the
purposes of calculating the linear functional J, then |J(u) — J(U)| will
be small. Loosely speaking, this will be true if, for each component
of the solution at every point of the computational domain, either:
(i) the magnitude of the residual is small; or (ii) the magnitude of ¢
is small. As a consequence, if the magnitude of ¢ is small we do not
need an accurate solution to the differential equation to calculate
J(u) accurately: an approximate model will suffice.

The contribution to J(u) — J(U) given by Eq. (5) may be decom-
posed into local contributions from different regions of the compu-
tational domain, allowing us to identify regions with the highest
contribution to the error in calculating the functional using the re-
duced model. The full model is then solved in these regions thus
generating an updated reduced model. This process is repeated
iteratively until sufficient accuracy is achieved.

Having illustrated the key concept behind our a posteriori model
reduction technique, we shall now proceed to develop an algo-
rithm for systematically using this technique for various classes
of differential equations.

3. Boundary-value differential equations

In this section we consider systems of boundary value ordinary
differential equations. We begin by deriving an a posteriori model
reduction algorithm for general systems of nonlinear boundary
value ordinary differential equations in Section 3.1. This algorithm
is then applied first to an exemplar linear model problem in
Section 3.2, and then to a nonlinear chemotaxis problem in
Section 3.3.
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