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As the development of a dengue vaccine is ongoing, we simulate an hypothetical vaccine as an extra
protection to the population. In a first phase, the vaccination process is studied as a new compartment
in the model, and different ways of distributing the vaccines investigated: pediatric and random mass
vaccines, with distinct levels of efficacy and durability. In a second step, the vaccination is seen as a con-

trol variable in the epidemiological process. In both cases, epidemic and endemic scenarios are included
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in order to analyze distinct outbreak realities.
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1. Introduction

Since 1760, when the Swiss mathematician Daniel Bernoulli
published a study on the impact of immunization with cowpox,
the process of protecting individuals from infection by immuniza-
tion has become a routine, with historical success in reducing both
mortality and morbidity [1]. The impact of vaccination may be re-
garded not only as an individual protective measure, but also as a
collective one. While direct individual protection is the major focus
of a mass vaccination program, the effects on population also con-
tribute indirectly to other individual protection through herd
immunity, providing protection for unprotected individuals [2].
This means that when we have a large neighborhood of vaccinated
people, a susceptible individual has a lower probability in coming
into contact with the infection, being more difficult for diseases to
spread, which decreases the relief of health facilities and can break
the chain of infection.

Dengue is a vector-borne disease that transcends international
borders. It is transmitted to humans through mosquito bite, mainly
the Aedes aegypti. In this process the female mosquito acquires the
virus while feeding on the blood of an infected person. The blood is
necessary to feed their eggs. Larvae hatch when water inundates
the eggs as a result of rains or an addition of water by people.
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When the larva has acquired enough energy and size, metamor-
phosis is done, changing the larva into pupa. The newly formed
adult emerges from the water after breaking the pupal skin. This
process could lasts between 8 to 10 days [3]. Vector control re-
mains the only available strategy against dengue. Despite inte-
grated vector control with community participation, along with
active disease surveillance and insecticides, there are only a few
examples of successful dengue prevention and control on a na-
tional scale [4]. Besides, the levels of resistance of A. aegypti to
insecticides has increased, which implies shorter intervals between
treatments, and only few insecticide products are available in the
market due to the high costs for development and registration
and low returns [5].

Dengue vaccines have been under development since the 1940s,
but due to the limited appreciation of global disease burden and
the potential markets for dengue vaccines, industry interest lan-
guished throughout the 20th century. However, in recent years,
the development of dengue vaccines has dramatically accelerated
with the increase in dengue infections, as well as the prevalence
of all four circulating serotypes. Faster development of a vaccine
became a serious concern [6]. Economic analysis are conducted
to guide public support for vaccine development in both industri-
alized and developing countries, including a previous cost-effec-
tiveness study of dengue [7-9]. The authors of these works
compared the cost of the disease burden with the possibility of
making a vaccination campaign; they suggest that there is a poten-
tial economic benefit associated with promising dengue interven-
tions, such as dengue vaccines and vector control innovations,
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when compared to the cost associated to the disease treatments.
Constructing a successful vaccine for dengue has been challenging:
the knowledge of disease pathogenesis is insufficient and in addi-
tion the vaccine must protect simultaneously against all serotypes
in order to not increase the level of dengue haemorrhagic fever
[10].

Currently, the features of a dengue vaccine are mostly un-
known. Therefore, in this paper we opt to present a set of simula-
tions with different efficacy and different ways of distributing the
vaccine. We have also explored the vaccination process under two
different perspectives. In Section 2 a new compartment in the
model is used and several kinds of vaccines are considered. In Sec-
tion 3, a second perspective is studied using the vaccination pro-
cess as a disease control in the mathematical formulation. In that
case the theory of optimal control is applied. Both methods assume
a continuous vaccination strategy.

2. Vaccine as a new compartment in the model

The interaction human-mosquito is detailed in a previous work
by the authors [11]. See also [12]. The notation used in our math-
ematical model includes four epidemiological states for humans:

Su(t)- susceptible (individuals who can contract the disease);
Vh(t)- vaccinated (individuals who were vaccinated and are
now immune);

Iy (t)- infected (individuals who are capable of transmitting the
disease);

Ry (t)- resistant (individuals who have acquired immunity).

It is assumed that the total human population (N;) is constant, so,
Np = Sp + Vi + I + Ry. The compartment V), represents the group
of human population that is vaccinated, in order to distinguish
the resistance obtained through vaccination and the one achieved
by disease recovery. There are also three other state variables,
related to the mosquitoes:

An(t)- aquatic phase (includes the eggs, larva and pupa stages);
Sm(t)- susceptible (mosquitoes able to contract the disease);
In(t)- infected (mosquitoes capable of transmitting the disease
to humans).

Similarly to the human population, it is assumed that the total
adult mosquito population is constant, which means
N = Sm + In. There is no resistant phase in mosquitoes due to its
short lifespan and the fact that the coefficient of disease transmis-
sion is considered fixed. Another assumption is the susceptibility of
the humans and mosquitoes when they born. The parameters of
the model are:

N;- total population;

B- average number of bites on humans by mosquitoes, per day;
Bmp- transmission probability from I, (per bite);

Bnm- transmission probability from I, (per bite);

1/u,- average lifespan of humans (in days);

1/n,- mean viremic period (in days);

1/u,,- average lifespan of adult mosquitoes (in days);
- number of eggs at each deposit per capita (per day);
1/u,- natural mortality of larvae (per day);

n,- maturation rate from larvae to adult (per day);

m- female mosquitoes per human;

k- number of larvae per human.

Two forms of random vaccination are possible. The most common
to reduce the prevalence of an endemic disease is pediatric
vaccination; the alternative being random vaccination of the entire

population in an outbreak. In both cases, the vaccination can be
considered perfect, conferring 100% protection along all life, or
imperfect. This last case can be due to the difficulty of producing
an effective vaccine, the heterogeneity of the population or even
the lifespan of the vaccine.

2.1. Perfect pediatric vaccine

For many potentially human infections, such as measles,
mumps, rubella, whooping cough, polio, there has been much focus
on vaccinating newborns or very young infants. Dengue can be a
serious candidate for this type of vaccination. In the SVIR model,
a continuous vaccination strategy is considered, where a propor-
tion of the newborn p (where 0 < p < 1), was by default vacci-
nated. This model also assumes that the permanent immunity
acquired through vaccination is the same as the natural immunity
obtained from infected individuals eliminating the disease natu-
rally. The population remains constant, i.e., N, =S, + Vj, +1I, + Ry.
The model is represented in Fig. 1. The mathematical formulation
is:
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We are assuming that the vaccine is perfect, which means that it
confers life-long protection. The nontrivial disease-free equilibrium
for system (1) is given by
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As a first step, we determine the basic reproduction number
without vaccination (p = 0).

Theorem 2.1. Without vaccination, the basic reproduction number
Ro, associated to the differential system (1), is given by
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Proof. The proof is similar to the one presented in [13]. O

We do all the simulations in two scenarios: an epidemic and an
endemic situation. The following values for the parameters of the
differential system and initial conditions were used (Tables 1 and
2). These values are based on previous works [11,13]. A small num-
ber of initial infected individuals (Io = 10) is considered, to simu-
late an early action by the health authorities. We recall that dengue
is endemic when it occurs several times in a year, and is not related
with the initial value of infected individuals. Moreover, a small ini-
tial value of infected individuals in an endemic scenario is in agree-
ment with [14]. In our work the same initial value of I, for both
epidemic and endemic scenarios is important in order to compare
the development of the disease.

Two main differences between an epidemic episode and an en-
demic situation were found. Firstly, in the endemic situation there
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