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a b s t r a c t

In a standard procedure of food safety testing, the presence of the pathogenic bacterium Listeria monocyt-
ogenes can be masked by non-pathogenic Listeria. This phenomenon of Listeria overgrowth is not well
understood. We present a mathematical model for the growth of a mixed population of L. innocua and
L. monocytogenes that includes competition for a common resource and allelopathic control of L. mono-
cytogenes by L. innocua when this resource becomes limited, which has been suggested as one potential
explanation for the overgrowth phenomenon. The model is tested quantitatively and qualitatively against
experimental data in batch experiments. Our results indicate that the phenomenon of masked pathogens
can depend on initial numbers of each population present, and on the intensity of the allelopathic effect.
Prompted by the results for the batch setup, we also analyze the model in a hypothetical chemostat setup.
Our results suggest that it might be possible to operate a continuous growth environment such that the
pathogens outcompete the non-pathogenic species, even in cases where they would be overgrown in a
batch environment.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Listeria monocytogenes is a human pathogen responsible for
listeriosis, a foodborne illness that can lead to meningitis, septice-
mia, spontaneous abortion, perinatal infections and gastroenteritis
[5]. While instances of listeriosis are rare and the risk of infection
is low for healthy individuals, in those at high risk (elderly,
immune-compromised or pregnant) the mortality rate can be as
high as 30%. For example, a 2008/09 outbreak that originated in
an Ontario meat processing plant caused 22 deaths [15]. L. mono-
cytogenes has been frequently isolated from dairy, meat and also
vegetable products, in particular processed and packaged foods.
The US government has established a ‘‘zero tolerance’’ policy for
this pathogen, while in Canada and some European countries
the acceptance level is 100 colony forming units per g ready-to-
eat (RTE) product with a refrigerated shelf-life of less than 10 days
or in RTE foods not supporting the growth of L. monocytogenes
[9,16]. In addition to the health implications of foods contami-
nated with this pathogen, it has a tremendous economic conse-
quence for manufacturers, due to costs associated with product
recall and decreased sales of implicated products and brands.

Typically, contaminated food contains low numbers of L. mono-
cytogenes which cannot be easily detected without prior enrich-
ment to increase cell numbers. An international standard method
for L. monocytogenes detection in food (ISO11290-1) consists of a

two step process where food samples are placed in an enrichment
broth which allows Listeria species to grow but is detrimental to
other microorganisms [17]. This method is reliable if the patho-
genic L. monocytogenes is the only representative of the Listeria
genus in the sample. However, this is often not the case and in
some instances overgrowth of L. monocytogenes by other Listeria
species can occur if they are also present in the original food sam-
ple. In this case, the smaller numbers of the pathogen can remain
undetected among the dominating non-pathogens, leading to false
negatives [14]. This overgrowth phenomenon in enrichment culti-
vation has been observed in several studies [4,7,8,20]. Several
underlying mechanisms have been proposed to explain it, includ-
ing competition for limiting nutrients, the physiological state of
the cells, and inhibitors that are produced by the bacteria [4]. This
overgrowth phenomenon is not well understood, partially because
the mathematical models that are routinely used in food microbi-
ology to determine growth kinetics of bacteria are too simple to
describe growth limiting processes with sufficient detail.

In this paper we propose a mathematical model for the growth
of a mixed population of non-pathogenic L. innocua and pathogenic
L. monocytogenes that includes two of the these mechanisms for
Listeria overgrowth. The model considers competition of both spe-
cies for a common resource; when this resource becomes limited,
L. innocua starts producing a compound that is detrimental for L.
monocytogenes (allelopathic interaction). The model is tested by
quantitative comparison against data sets of batch experiments
in the published literature. Our primary finding, obtained by
quantitative and qualitative analysis of the model in batch and
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continuous growth environments, is that with these strains the
fate of L. monocytogenes in a mixed growth environment is more
controlled by the toxins produced by L. innocua than by active
competition for a shared resource. In particular our results suggest
that in the continuous growth system we can have bistability of
both semi-trivial equilibria (only one of both species survives)
due to the allelopathic growth advantage of L. innocua, which can
be strong enough to override the principle of competitive exclusion
in purely competitive systems [18], where always the species with
the lower break-even concentration survives.

2. Mathematical model in a batch setup

2.1. Governing equations

We propose a mathematical model for the growth of a mixed
population of L. innocua and L. monocytogenes. Both species com-
pete for a substrate; limitation of this substrate triggers L. innocua
to release a compound that is detrimental to L. monocytogenes. The
model is cast as a system of differential equations for the four
dependent variables: density of L. innocua (X1), density of L. mono-
cytogenes (X2), concentration of the growth limiting substrate S,
and concentration of the inhibitor C. The governing equations read:

dX1

dt
¼ a1X1f1ðSÞ; ð1Þ

dX2

dt
¼ a2f2ðSÞX2 � f3ðCÞX2; ð2Þ

dS
dt
¼ � 1

Y1
a1X1f1ðSÞ �

1
Y2

a2X2f2ðSÞ; ð3Þ

dC
dt
¼ a1f4ðSÞX1 � l5C: ð4Þ

In (1) the function f1ðSÞ denotes the growth rate of X1 in dependence
of the substrate concentration S, similarly f2ðSÞ in (2) denotes the
growth rate of X2 in dependence of substrate concentration S.
Assuming standard Monod kinetics, these are

f1ðSÞ ¼ l1S
j1þS ;

f2ðSÞ ¼ l2S
j2þS :

8<: ð5Þ

Here l1, and l2 are maximum growth rates for the substrate per
unit mass of bacteria, and j1, and j2 are half saturation coefficients
for the substrates, respectively for X1 and X2. If substrate is available
in abundance, S� j1;2, the growth rates are independent of sub-
strate availability and growth rates are approximately constant,
i.e. they follow 0th order kinetics. If substrate is limited, S� j1;2,
the growth rate is proportional to the substrate concentration, i.e.
follows 1st order kinetics. Growth of both species is due to substrate
uptake, modeled by (3). Here Y1;2 are yield coefficients that describe
the conversion of substrate into biomass.

Bacterial growth curves of batch experiments typically show an
initial lag-phase with no or drastically slowed down growth.
Commonly this is attributed to physiological recovery of the cells,
e.g. after being refrigerated. While this phenomenon usually does
not affect the qualitative longterm behavior of the populations, it
is an important aspect if the model is to be fitted against
experimental data, as will be shown later. Several simple lag-phase
models have been proposed in the predictive food microbiology lit-
erature, based on different biological considerations, including the
Barnayi–Roberts model [1], the Hills–Wright model [10], and the
McKellar model [13]. However, it was shown in [6], that all these
models can be interpreted and re-formulated as simple logistic
equations. Therefore, we have

da1

dt
¼ a1m1ð1� a1Þ; ð6Þ

da2

dt
¼ a2m2ð1� a2Þ; ð7Þ

which can be solved to obtain

a1ðtÞ ¼
U0;1em1t

1þU0;1em1t
; ð8Þ

a2ðtÞ ¼
U0;2em2t

1þU0;2em2t
: ð9Þ

Substituting these expressions into (1)–(4), we obtain a four-
dimensional non-autonomous model instead of the original six-
dimensional autonomous system. The positive parameters U0;1

and U0;2 are measures of the initial physiological state of the popu-
lations of L. innocua and L. monocytogenes, respectively with a value
of1 to indicate a perfectly healthy population (capable of immedi-
ate maximal growth) and a value of 0 to indicate an irreparable pop-
ulation. The parameters m1 and m2 are measures of recovery
potential for L. innocua and L. monocytogenes, respectively.

The term �f3ðCÞX2 in (2) describes the growth limitation of spe-
cies X2 due to toxin C. We assume first order kinetics for this
process,

f3ðCÞ ¼ l3C: ð10Þ

The toxin is produced by X1 when substrate S becomes limited.
This is described in (4), where f4ðSÞ is assumed to follow standard
inhibition kinetics,

f4ðSÞ ¼
l4

j1 þ S
: ð11Þ

Eq. (4) also contains a term describing abiotic decay of the toxin at
rate l2.

Throughout we assume that all model parameters are positive.
With this in mind, the model given by Eqs. (1)–(4) with coeffi-

cient functions (8), (9), (5), (10), (11) is well posed. The model pre-
dicts that the population of X1 producing the toxin grows initially
and then reaches a steady state value, while the population X2

eventually vanishes; it grows initially when there is enough nutri-
ent in the system, but it slows down as the nutrient becomes de-
pleted and as the concentration of toxin increases. This is
formalized in the following statement.

Proposition 1 (Model behavior). The system (1)–(4) with coefficient
functions (8), (9), (5), (10), (11) and initial data X1ð0Þ > 0, X2ð0Þ > 0,
Sð0Þ > 0, Cð0ÞP 0 possesses a nonnegative unique solution which is
bounded by constants from above. Moreover X1ðtÞ is a monotonically
increasing function and X1ðtÞ ! X11 > 0 as t !1;X2ðtÞ is a mono-
tonically decreasing function for large enough t and X2ðtÞ ! 0 as
t !1; SðtÞ is monotonically decreasing and SðtÞ ! 0 as t !1, and
CðtÞ is monotonic for large enough t and CðtÞ ! C1 > 0 as t !1.

Proof. Non-negativity of the solutions to this initial value problem
follows with standard arguments, e.g. the invariance theorems in
[19]. In the positive cone, the right hand side of (1)–(4) is differen-
tiable, i.e. the system satisfies a Lipschitz condition, which implies
existence and uniqueness. Monotonicity of X1 and S follows
directly from (1) and (3) and the non-negativity of the solutions.

From (1)–(3) follows

dX1

dt
þ dX2

dt
þ Y1

dS
dt
¼ a2f2ðSÞX2 1� Y1

Y2

� �
� f3ðCÞX2 ð12Þ

and
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