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a b s t r a c t

We develop an extension to differential equation models of dynamical systems to allow us to analyze
probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply
our novel modeling approach to two cases of interest: a model of infectious disease modified for malware
where a detection event drastically changes dynamics by introducing a new class in competition with the
original infection; and the Lanchester model of armed conflict, where the loss of a key capability drasti-
cally changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable
method for applying our novel modeling approach to an arbitrary system, and we compare the resulting
differential equations to simulations of the system’s random progression. Our work leads to a simple and
easily implemented method for analyzing probabilistic threshold dynamics using differential equations.

Published by Elsevier Inc.

1. Introduction

Differential equation models have wide applicability in the
study of dynamic systems. They are attractive because they are
numerically fast and tractable, transparent in the sense that it is
easy to understand how the inputs directly relate to the outputs,
and frequently have special cases for which closed-form solutions
exist. Our research adapts these models to include systems with
stochastic, sharp thresholds. One example of a system with a sharp
threshold is a computer network where malicious code is intro-
duced, subject to probabilistic detection and subsequent eradica-
tion. In this system, one instant the malicious code is
undiscovered, and the following instant it is discovered; discovery
defines the sharp threshold and changes system dynamics by
allowing a remedy to be applied. For this and many other system,
‘half-thresholds’, such as ‘‘half discovered’’ are not physically real-
izable as they do not refer to any realizable state of the system.

A sharp threshold may also be seen in armed conflict where loss
of a key capability fundamentally changes the capability of one or
both sides.This may be thought of as loss of a key platform or capa-
bility. Statements such as ‘‘half attrited’’ do not refer to a realizable
state of the system while statements about the probability distri-
bution of a given system surviving are meaningful.

The current method of handling dynamical systems with sharp
thresholds is to appeal to simulation of the threshold event by sim-
ulating the entire system’s random progression. This is useful be-
cause it is easily understood, but is expensive, both in terms of
computation and time. Often, many simulation repetitions are

required to analyze the average behavior of the system and gain
useful insights.

It seems that the threshold process and the differential equation
model are irreconcilable, chiefly because the threshold event is not
divisible in the sense that its expected state is generally not reach-
able. Our contribution is to overcome this difficulty in a way that
has not been previously shown by applying a mean field approxi-
mation to the threshold process. By doing so, we create differential
equation models that capture the average performance of systems
with probabilistic threshold dynamics.

Our approach is novel in that we incorporate the distribution of
the threshold time, which may be dependent on the dynamic sys-
tem state, to create a representation of the average value of the
thresholded process. Our method produces a time-trace of the ex-
pected state of the system, as well as an explicitly time-dependent,
cumulative distribution of the threshold time.

The advantages to be had are numerous. First, by creating a dif-
ferential equation model, we are able to verify simulation models
by comparing them against derived or numerical results. Second,
we may use the fast, cheap, differential equation model to scope
complex, expensive simulations. Additionally, as a by-product,
the model produces the time-dependent cumulative distribution
of the threshold time, which prior to modeling may be expressed
in terms of the dynamic system state and therefore may not have
explicit time dependence. Finally, after developing the theory, we
provide two worked examples, along with a step-by-step tutorial
on how to apply this method to any thresholded system with a dif-
ferential equation model.

The organization of the paper is as follows: In Section 2, we re-
view the applicable literature. In Section 3, we derive our novel
methodology by developing a mean-field approximation for
spreading malware among a computer network, and extract the
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step-by-step procedure for applying it to other systems. In Sec-
tion 4, we apply the step-by-step procedure to the Lanchester
model of armed conflict. In Section 5, we provide numerical exam-
ples comparing the differential equation models to simulations. In
Section 5, we also demonstrate that the differential equations from
our novel methodology are fundamentally different from differen-
tial equations for a non-thresholded system; in other words, no
choice of parameters of the non-thresholded differential equations
may replicate the behavior of the thresholded differential equa-
tions. Finally, in Section 6, we provide some discussion of and
directions for future research.

2. Literature review

The general theory and application of differential equation
models for physical and social phenomena is a common topic that
spans several disciplines, including applied mathematics, biology,
and operations research. Many good overviews of the topic exist;
for a general text, we recommend Differential Equation Models by
Braun et al. [8]. For an overview of basic analysis and solution tech-
niques, we recommend O’Neil [34]. Mean-field approximations are
frequently used in physics; for an in-depth overview, see the sec-
ond chapter of Freericks [15]. An overview of approximation meth-
ods for probabilistic methods is given by Darling [11].

Mean-field models of epidemics have a long history, and are
covered in detail in [10] (see also [2,1]). For a short overview, we
recommend the recent tutorial by Dimitrov and Meyers [12]. Fit-
ting models to data is addressed by Mollison [30], and stochastic
epidemics are reviewed in detail by Andersson and Britton [2]. Spe-
cific system behaviors related to our research, such as time of dis-
covery thresholds, are addressed by Metz et al. [29]. The
distribution of the number of infected individuals at the moment
of first detection is studied by Trapman and Bootsma [37].

The application of infectious disease models to computer infec-
tions has been recommended by Jason [20], an independent group
of scientists advising the United States government. A related and
noteworthy reference is the case study of the Code Red worm by
Moore et al. [31]. Epidemics on networks, and particularly the S–
I–R model is studied by Draief et al. [13], and the implications of
several theoretical network topologies are examined. The spread
of malware on wireless networks is considered by Hu et al. [19].
This paper examines the performance of malware—and the steps
taken to prevent it—on representative topologies for seven urban
ares in the United States.

The work most closely related to our application in malware
infections is [38]. Their model closely matches the dynamics of
ours in that machines may be in two competing states—infected
or patched—and the system operator wishes to maximize the num-
ber of patched machines. Our work differs from theirs because, in
our model, the detection event occurs as a function of the infection
process.

Two recent books by Newman [33,32] describe the formulation
and analysis of network models and include cases of epidemics
spread on networks as well as the general theory of mean-field
approximations. For the specific application of computer infection,
our work is different in that we consider both epidemic detection
and spread simultaneously in a single, integrated set of differential
equations that track the whole progression of the epidemic. Epi-
demics on networks are also considered in Keeling and Eames
[22], where the force of infection changes as a function of time.
This work [22] bears some similarity to the Lanchester example
we use in this manuscript–in which an equation parameter
changes after a certain random threshold event–however, the
methods we develop address general changes in dynamics, beyond
parameter changes. In Section 3.4, we describe a general,

step-by-step method in which system dynamics can change arbi-
trarily as a function of a threshold event. For example, we could
study a system where one set of machines, I, infect another set of
machines, S, then based on some random event that itself depends
on the numbers of I and S machines the dynamics switch and now
S machines infect I machines. This extreme example illustrates the
broad applicability and potential of our methodology, in that it can
handle whole-sale changes of the entire system, where the timing
of the change itself is dependent on the system state.

Mean-field models have been applied in epidemic models of
network infections by Lelarge and Bolot [27], and a development
of their applicability to general infectious disease models is given
in [24], who justify the use of the mean-field approximation for
sufficiently large, non-homogeneous networks. Aparicio and Pasc-
ual [4] describe the mean-field approach and demonstrate specific
cases where it diverges from more sophisticated methods. Essen-
tially, mean field, also called ‘‘compartmental’’ or ‘‘mass action’’
models assume homogeneous mixing. In large networks this may
be unsatisfactory because it ignores the dynamic that individuals
tend to interact more with those who are close to them than those
who are far away. This dynamic is further complicated by consid-
ering epidemics on information systems, where the network topol-
ogy may have little correlation with physical topology. Keeling [21]
develops a correction to the basic S–I–R model by replacing the sta-
tionary infectivity parameter, b with a non-stationary bðtÞ, which
captures the effect of faster transmission in the beginning stages
of infection and slower transmission at the end of the epidemic.
Keeling and Eames [22] also addresses the applicability of mean-
field models to network epidemic transmission. Though, the focus
of this work is a general procedure of creating mean-field models
as opposed to the specific application of mean-field models to
networks.

Infections with multiple stages are considered by Gani [16].
Their approach partitions the infective population into two sub-
populations; a susceptible individual becomes fully part of the
infective class after having contact with both the first- stage and
second-stage of the infection.

Multiple Stages are also developed by Chowell [9]. These ap-
proaches increase the partitioning of the model or generalize the
distribution time in each partition but do treat the threshold as
global. Finkelstein [14] also studies epidemics with multiple
stages. They share our approach of making the first stage of their
model the unencumbered, or basic S–I–R model. The second stage
they consider measures the cost associated with the epidemic.
These two stages are analyzed iteratively to determine the amount
of prophylactic vaccination that minimizes the epidemics’ impact -
from a cost perspective. Aggressive prophylactic measures, such as
vaccination in biological epidemics are considered by House and
Keeling [18]. The problem of determining the correct amount of
preventative measure is similar to our problem of patch dissemina-
tion in a malware context.

Another perspective on multiple stage epidemics is provided
by Klepac and Caswell [25]. Here, feedback exists between the
infective process and the ‘demographic’ process—which consists
of immigration and birth. Their approach includes processes that
work on different time scales operating in the same model; their
overall development measures density-dependent disease
transmission. Conversely, our development focuses on the global,
uniform change in dynamics created by discovery of malware, or
loss of a critical combat enabler. Our threshold may be explicitly
dependent on time or implicitly dependent on the other state
variables. Furthermore, we extend our model approach beyond
epidemics to general dynamic systems, using the Lanchester
model of aimed fire as an example. It is possible that for
specific scenarios, Kelpac and Caswell’s model produces similar
results.
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