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a b s t r a c t

We develop a stochastic metapopulation model that accounts for spatial structure as well as within patch
dynamics. Using a deterministic approximation derived from a functional law of large numbers, we
develop conditions for extinction and persistence of the metapopulation in terms of the birth, death
and migration parameters. Interestingly, we observe the Allee effect in a metapopulation comprising
two patches of greatly different sizes, despite there being decreasing patch specific per-capita birth rates.
We show that the Allee effect is due to the way the migration rates depend on the population density of
the patches.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The field of metapopulation ecology concerns the study of pop-
ulations with a specific spatial structure where the population is
separated into geographically distinct patches or islands. There
has been a high level of interest in the field since the late 60s
[1,2], and this has continued to the present (see [3–6] and refer-
ences therein). Of significant concern to ecologists is the survival
of the population and under what conditions the population might
become extinct. Mathematical models have proved useful in
addressing these questions.

Many models employ the presence–absence assumption, that
is, they simply record whether or not each patch is occupied. This
assumption is employed in the two most widely used metapopula-
tion models: Levins’ model [1] and Hanski’s incidence function
model [4]. Hanski’s model has proven extremely successful in
incorporating landscape structure and quality into the metapopu-
lation dynamics. More generally, the presence–absence assump-
tion has simplified modelling, data collection and analysis for a
number of metapopulations [7–14]. However, this assumption is
not always adequate, for example in stock dynamics where more
detail is required [15].

On the other hand, structured metapopulation models (SMMs)
such as [16–20] model the births, deaths and migration of individ-
uals directly, and the number of individuals present on each patch
is recorded. The parameters of SMMs are easily interpreted as

per-capita birth, death and migration rates, rather than abstract
parameters such as patch level extinction and colonisation rates.
Furthermore, SMMs give far more detail about the state of the
metapopulation than is possible under the presence–absence
assumption. Unfortunately, the SMMs cited above impose a num-
ber of unrealistic assumptions on the metapopulation; they fail
to account for the spatial configuration of patches and assume that
migration patterns are homogeneous across all patches.

We introduce a metapopulation model that is structured in re-
spect of both spatial configuration and within patch dynamics. Our
model has the form of a Markov population process introduced in
[21]. Previous analyses of this class of models have focussed on
determining expressions for moments and stationary distributions
[3]. However, the restrictions that these analyses require are not
natural in the present context since our model has an absorbing
state corresponding to extinction. In this case, the stationary distri-
bution would necessarily assign all its probability mass to the
extinction state, and thus would not provide useful information
about any quasi-stationary regime (being a common feature of
metapopulation models [22]). Instead, we analyse this model by
determining a simpler approximating differential equation based
on the work of Kurtz [23] and Pollett [24].

Using the differential equation, we are able to determine condi-
tions under which the metapopulation will go extinct quickly or
persist for an extended period of time. We are also able to identify
more complex dynamics such as the presence of an Allee effect for
some range of parameters. An Allee effect refers to populations
exhibiting an increasing per capita growth rate at low population
density levels. When the per-capita growth rate is initially
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negative, a critical threshold emerges below which the population
goes extinct. In populations displaying an Allee effect, conservation
strategies need to be adapted to account for this, particularly if a
critical threshold is present [25, Section 5.1.4].

The paper is organized as follows. We begin, in Section 2, by
detailing our model. The differential equation approximation is de-
scribed in Section 3. In Section 4, we analyse the long-term behav-
iour of the approximating deterministic model, deriving conditions
for extinction or persistence, and demonstrate the possibility of an
Allee effect. Some examples are given to illustrate our results. Our
conclusions are summarised in Section 5.

2. The model

Our model is an example of Kingman’s [21] Markov population
process. Define, for any positive integer J; SJ as the set of J-vectors
n ¼ ðn1; . . . ; nJÞ where the ni are non-negative integers. A simple
Markov population process is a Markov process on a subset S of
SJ whose only nonzero transitions rates are given by

qðn;nþ eiÞ ¼ aiðniÞ; ð1Þ

qðn;n� eiÞ ¼ biðniÞ; ð2Þ

qðn;n� ei þ ejÞ ¼ cijðni;njÞ for all j – i; ð3Þ

where ei is the unit vector with a 1 in the ith position and qðx; yÞ is
rate from state x to state y. In the present context, J is the number of
patches in the metapopulation and niðtÞ is the number of individu-
als occupying patch i at time t. The Markov process ðnðtÞ; t P 0Þ
describing the state of the metapopulation takes values in
SN ¼ f0; . . . ;N1g � � � � � f0; . . . ;NJg and has nonzero transition rates

aiðniÞ ¼ nibi
ni

Ni

� �
; ð4Þ

biðniÞ ¼ /iðniÞki0 þ dini; ð5Þ

cijðni;njÞ ¼ /iðniÞkij
Nj � nj

Nj
for all j – i; ð6Þ

where /ið0Þ ¼ 0; /iðnÞ > 0 for n P 1 and bi : ½0;1�# Rþ such that
biðxÞ ¼ 0 for all x P 1. These rates correspond to: an increase on
patch i due to a birth (4), a decrease on patch i due to a death or re-
moval from the system (5) and a migration from patch i to patch j
(6). The parameters di; kij and Ni are the per-capita death rate, pro-
portion of individuals migrating from patch i to patch j (or out of the
system if j ¼ 0) and the population ceiling for patch i, respectively.
The birth rate function bið�Þ determines the per-capita birth rate gi-
ven how densely populated patch i is. The function /ið�Þ, henceforth
referred to as the migration function, represents the rate at which
individuals leave patch i. Fig. 1 illustrates these transitions.

We note that the models of Renshaw [3] and Arrigoni [17] have
a number of features in common with our model. The main differ-
ence with Renshaw’s model is in the linearity of the birth and
migration rates. That linearity excludes the possibility of a carrying
capacity at each patch. Arrigoni’s model included catastrophes,
that is, the possibility of the instantaneous death of all individuals

on a given patch. However, it assumed that the birth, death and
migration rates were the same for all patches and, as in Renshaw’s
model, it could not incorporate a carrying capacity at each patch.

3. Differential equation approximation

We will apply Theorem 3.1 of Pollett [24] which allows us to
approximate the path of our process by the solution to a system
of differential equations. To do this we first need to establish that
our model is density dependent in the sense of Kurtz [23], or at
least asymptotically density dependent [24].

Define the population ceiling as the sum of all patch ceilings
N :¼

P
jNj. The population density at patch i is the number in patch

i measured relative to N and is given by XðNÞi ðtÞ :¼ niðtÞ=N. We are
interested in the convergence of the density process
XN :¼ ðXðNÞ1 ; . . . XðNÞJ Þ as N !1. Define the relative ceiling for patch
i as MðNÞ

i :¼ Ni=N and assume that MðNÞ
i ! Mi > 0 as N !1. The den-

sity process XN is a Markov process on the state space EN :¼ SN=N.
Suppose that the functions /̂ðNÞi : ½0;MðNÞ

i � ! Rþ satisfy

/̂ðNÞi

n
N

� �
¼ /iðnÞ

N

for all n P 1 and N P 1. Then, the rates (4)–(6) can be written as

qðn;nþ lÞ ¼ NfN
n
N
; l

� �
;

where

fNðx; lÞ ¼

xibi
xi

MðNÞ
i

� �
if l ¼ ei;

/̂ðNÞi ðxiÞki0 þ dixi if l ¼ �ei;

/̂ðNÞi ðxiÞkij 1� xj

MðNÞ
j

� �
if l ¼ �ei þ ej;

0 otherwise:

8>>>>>>>><>>>>>>>>:
Let FðNÞðxÞ :¼

P
llfNðx; lÞ and observe that

FðNÞi ðxÞ ¼ bi
xi

MðNÞ
i

 !
� di

 !
xi þ

X
j–i

/̂ðNÞj ðxjÞkji 1� xi

MðNÞ
i

 !

� /̂ðNÞi ðxiÞ ki0 þ
X
j–i

kij 1� xj

MðNÞ
j

 ! !
:

Define E :¼ ½0;M1� � . . .� ½0;MJ�. Assume there exists bounded Lips-
chitz continuous functions /̂i : ½0;Mi� ! Rþ satisfying

lim
N!1

sup
x2½0;Mi �

/̂ðNÞi xð Þ � /̂i xð Þ
��� ��� ¼ 0; for all i ð7Þ

and also

lim
N!1

sup
x2½0;Mi �

bi
xi

MðNÞ
i

 !
� bi

xi

Mi

� ������
����� ¼ 0: ð8Þ

We may then conclude that FðNÞðxÞ ! FðxÞ as N !1, uniformly on E,
where

FiðxÞ ¼ bi
xi

Mi

� �
� di

� �
xi þ

X
j–i

/̂jðxjÞkji 1� xi

Mi

� �

� /̂iðxiÞ ki0 þ
X
j–i

kij 1� xj

Mj

� � !

for i ¼ 1; . . . ; J. Therefore, the family of processes indexed by the
population ceiling N is asymptotically density dependent according
to Definition 3.1 of [24]. Next we apply Theorem 3.1 of [24], the
analogue of Theorem 3.1 of Kurtz [23] for asymptotically density
dependent families of processes. The conditions of this theorem
are fulfilled as fNðx; lÞ is bounded on E for all N and l and is nonzeroFig. 1. Illustration of the dynamics for patch i and migration to and from patch j.
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