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a b s t r a c t

Computer simulation models can provide a relatively fast, safe and inexpensive means to judge and 
weigh the merits of various pest control management options. However, the usefuln ess of such simula- 
tion models reli es on the accurate estimati on of important model parameters, such as the pest mortality 
under different treatments and conditions. Recently, an individual-based simulation model of populatio n
dynamics and resistance evolution has been developed for the stored grain insect pest Rhyzopertha
dominica, based on experimental results showing that alleles at two different loci are involved in resis- 
tance to the grain fumigant phosphine. In this paper, we describe how we used three generalized linear 
models, probit, logistic and Cauchy models, each employing two- and four-parameter sub-models, to fit
experimental data sets for five genotype s for which detailed mortality data was already available. Instead 
of the usual statistical iterative maximum likelihood estima tion , a direct algebraic approach, generalized
inverse matrix techniq ue , was used to estimate the mortality model parameters. As this technique needs 
to perturb the observed mortality proportions if the proportions include 0 or 1, a golden section search 
approach was used to find the optimal perturbation in terms of minimum least squares (L2) error. The 
results show that the estimates using the probit model were the most accurate in terms of L2 errors
between observed and predicted mortality values. These errors with the probit model ranged from 
0.049% to 5.3%, from 0.381% to 8.1% with the logistic model and from 8.3% to 48.2% with the Cauchy 
model. Meanwhile, the generalized inverse matrix technique achieved similar results to the maximum 
likelihood estimation ones, but is less time consuming and computationally demanding. We also describe 
how we constructed a two-parameter model to estimate the mortalities for each of the remaining four 
genotypes based on realistic genetic assumptions.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction 

The lesser grain borer, Rhyzopertha dominica , is a very destruc- 
tive primary pest of stored grains. Fumigation with phosphine 
(PH3) is a key component in the managemen t of controlling pest 
infestations worldwide. However heavy reliance on PH 3 has re- 
sulted in the development of strong resistance in several major 
pest species including R. dominica. Computer simulatio n models 
can provide a relatively fast, safe and inexpensive means to judge 
and weigh the merits of various management options for control- 
ling populations and avoiding or delaying resistance evolution in 
pests such as R. dominica. But the usefulness of simulation models 

such as these relies on the accurate estimation of key model 
paramete rs, which should be based on reliable experimental data 
as much as possible.

In previously published simulation modelling research on this 
important topic of phosphine resistance in stored grain insect 
pests, accurate survivorship of different genotypes was not explic- 
itly included in the model because adequate data were not avail- 
able [1], and thus a simple single gene model was used.
However , recent fumigant response analyses of PH 3 resistance in 
R. dominica in Australia have indicated the existence of two resis- 
tance phenotypes , which are labelled Weak and Strong Resistance 
[2–4]. The genetic linkage analysis undertak en by Schlipalius et al.
[5,6] revealed that two loci confer strong resistance, thus motivat- 
ing us to construct a more detailed and realistic two-locus individ- 
ual-based simulation model of resistance [7–10]. In our two-locus 
model, for simplicit y we assume that there are two possible alleles 
(resistance or susceptibility) at each of the two loci, meaning nine 
genotypes in total. As phosphine concentr ation and time of 
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exposure are both important in determini ng the intensity of 
response to the fumigant, the ability to estimate mortality for the 
different genotypes at a range of concentr ations and exposure 
times based on experimental data is critical for the accuracy of this 
new two-locus simulatio n model.

Experiments by Collins et al. [11,12] and Daglish [13] pro-
vided results that help to quantify the expected mortality of 
these nine resistance genotypes. These were conducted on in- 
sects that had been purified to produce strains. The data sets 
from the experiments of Collins et al. contain three strains 
QRD14, QRD569 and their Combined F1 (QRD14 � QRD569)
and those from Daglish’s experime nts contain QRD14 (the same 
as Collins’), QRD369 and their hybrid (QRD14 � QRD369). Each 
of the five strains corresponds to a single genotype of the nine 
possible genotypes in our two-locus model (Table 1), whereas 
in most previous studies (e.g. [14]), datasets were obtained from 
population samples from the field likely to contain various mix- 
tures of resistance genes. Hence these new results provide the 
means to accurately estimate mortaliti es for the available five
strains, which is the first phase of our mortality modellin g.
Moreover, those estimates can in turn be used to construct a
model to estimate mortalities for the remaining four genotypes ,
based on reasonable genetic assumpti ons [8], which is the sec- 
ond phase.

Our previous papers [7,8] presente d some discussion of phos- 
phine mortality estimation. However, these focussed on the 
numerical algorithm used for model fitting, with only a limited 
use of experimental data for illustration [7], and presented preli- 
minary modelling results based on simple probit models only [8].
Moreover, there was a limitation in the numerical treatment in 
the two papers. The kill rates in some of the experiments included 
one and zero [11]; to enable the probit least squares approach to be 
used, these two values need to be changed from 1 to 1 � e or from 0
to e where e is a small perturbation , otherwise, their link function 
values (see below) are undefined. But in the previous two papers 
[7,8] the choice of e was arbitrary and fixed and certainly not opti- 
mal in terms of minimum least square error. This limitation moti- 
vated us to conduct this current more comprehensive study on the 
best way to model mortality phosphine mortality for different 
genotypes.

In this paper we describe how we used three models, probit, lo-
gistic and Cauchy models to fit the available data sets using either C
(concentration or dose) and t (exposure time) themselv es or log(C)
and log(t) as the independen t model variables, and compared the 
relative accuracy of probit, logistic and Cauchy models for mortal- 
ity estimation. We also tested and compare d two-parameter and 
four-paramete r sub-models for each of the three models. We also 
show how we developed an approach for identifying an optimal 
perturbation value when mortality was 0 or 1 based on the golden
section search method.

2. Materials and methods 

2.1. Two-locus model with nine genotypes 

To para met eris e the mo rtali ty compo nent of our sim ula tion mo d- 
el, we need ed to dev elo p empi ric al mo rtal ity mo dels for each geno- 
typ e. Sin ce ther e are two loc i in the mo del [7–10] , wit h two pos sibl e
all ele s on each of the loc i, ther e are nine gen oty pes in tota l (Tabl e 1).

2.2. Three generalise d linear models of mortality 

In statistics , the generalised linear model (GLM) in the form of 

Y ¼ aþ b1x1 þ b2x2 þ � � � þ bkxk ð1Þ

is a flexible general ization of ordinar y least squares regressi on that
allows the linear model to be related to the response variable via 
a link function for Y and the magnit ude of the varianc e of each mea- 
surement to be a function of its predicted value [15]. GLMs applica -
ble to binomial mortal ity data include probit regression (with a
probit link function), logistic regression (with the canonical logit
link) and Cauch y regressi on (with the tangent link) which we used 
to fit the experime ntal data sets.

2.2.1. Probit model 
The probit (=‘‘probability unit’’) link function U(P) (Y = U(P) + 5)

is the inverse cumulative distribution function (CDF) associate d
with the standard normal distribut ion [16,17]:

P ¼ U�1ðY � 5Þ ¼ 1ffiffiffiffiffiffiffi
2p
p

Z Y�5

�1
exp �u2=2

� �
du ð2Þ

where P is the actual mortality (proportion that died, 0 6 P 6 1) and 
Y is the probit transformed mortality . Note that adding five to U(P)
just ensures all Y values are positive in practice , and simply means 
the paramete r a is transf ormed by a constant value of five compared 
to an alternative link function where this is not applied.

Using a three-paramet er probit model [16], a probit plane 

Y ¼ aþ b1mðtÞ þ b2mðCÞ ð3Þ

may be fitted to the data, where t and C are respective ly exposure 
time and concentrat ion, and Y is the probit mortal ity. We consid- 
ered two choices for the function m: the logarit hmic function, i.e.
m(t) = log(t) and m(C) = log(C) (whether common logarithm s (base
10) or natural logarithms (base e) are used is immaterial), or the 
identit y function, i.e. m(t) = t and m(C) = C.

In the case that the available independent data consist only of 
the products Ct (e.g. a range of C but a fixed time t), rather than 
independen t values of C and t separately, the parameters b1 and
b2 can be merged into a single parameter, b, resulting in a two- 
paramete r probit model:

Y ¼ aþ bmðCtÞ ð4Þ

Table 1
The identifiers of the nine genoty pes (ss,sh, . . .,rr) in the two-locus model, and the correspondence of genotypes and the five strains for which 
experimental mortality data was available [s – homogeneous (‘‘homo’’) suscep tible (‘‘suscept’’); r – homogeneous resis tant; h – heterozygous 
(‘‘hetero’’)].
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