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a b s t r a c t

Differential algebra approaches to structural identifiability analysis of a dynamic system model in many
instances heavily depend upon Ritt’s pseudodivision at an early step in analysis. The pseudodivision algo-
rithm is used to find the characteristic set, of which a subset, the input-output equations, is used for iden-
tifiability analysis. A simpler algorithm is proposed for this step, using Gröbner Bases, along with a proof
of the method that includes a reduced upper bound on derivative requirements. Efficacy of the new algo-
rithm is illustrated with several biosystem model examples.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

A priori structural identifiability analysis is concerned with find-
ing one or more sets of solutions for the unknown parameters p of
a structured dynamic system model with state and output equa-
tions of the form (1.1) from noise-free input–output {u(t),y(t)}
data:

_xðt;pÞ ¼ f ðxðt;pÞ;uðtÞ; t; pÞ; t 2 ½t0; T�
yðt;pÞ ¼ gðxðt;pÞ; pÞ ð1:1Þ

Here x is a n-dimensional state variable, p is a P-dimensional
parameter vector, u is the r-dimensional input vector, and y is
the m-dimensional output vector. In the differential algebra ap-
proach, one assumes f and g are rational polynomial functions of
their arguments, a reasonable assumption in most applications.
The assumption that the output vector is only dependent upon ele-
ments of the state variable, and not its derivatives, will be impor-
tant for the analysis in this work.

Differential algebra approaches have been shown to be quite
useful in addressing global as well as local identifiability properties
of these models [1–4]; and several differential algebra algorithms
have been developed and implemented in available software pack-
ages [4–6]. Unfortunately, all are encumbered by computational
algebraic complexity or other difficulties, and are limited thus far
to relatively low dimensional models [7–9]. To alleviate some of

this computational complexity, we describe a procedure that sim-
plifies the task of determining the input-output equations, which is
an important early step in preparing the system for identifiability
analysis, as considered in [10–14]. The general idea behind the
simplified procedure is to use a Gröbner Basis instead of the more
cumbersome Ritt’s pseudodivision to transform (1.1) into an impli-
cit input-output map involving only the elements and derivatives
of y and u along with the parameters p, as shown in [15,16]. We
extend the ideas of [15,16] by finding a stricter bound on the min-
imum number of derivatives of the equations needed in forming
the Gröbner Basis for the multi-output case.

2. Differential algebra approach to identifiability in brief

We now summarize the differential algebra approach to struc-
tural identifiability, as well as some differential algebraic concepts.
For more details on differential algebra, the reader is referred to
[17,18].

From (1.1), an input–output map is determined in implicit form
using a process called Ritt’s pseudodivision algorithm [4]. The re-
sult of the pseudodivision algorithm is called the characteristic set
[2]. Since the ideal generated by (1.1) is a prime ideal [19], the
characteristic set is a finite ‘‘minimal’’ set of differential polynomi-
als which generate the same differential ideal as that generated by
(1.1) [4]. The first m equations of the characteristic set are those
independent of the state variables, and form the input–output rela-
tions [4]:

Wðy;u;pÞ ¼ 0 ð2:1Þ
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The m equations of the input–output relations W(y,u,p) = 0 are
polynomial equations in u; _u; €u; . . . ; y; _y; €y; . . ., called differential
polynomials [17], with rational coefficients in the elements of the
parameter vector p.

For example, a simple first-order model, adapted from [20]:

_x ¼ p1xþ p2u

y ¼ p3x

with the chosen ranking _x > x > _y > y > u yields an input–output
equation, Wðy;u;pÞ ¼ 0, of the form:

Wðy;u;pÞ ¼
_y

p3
� p1

p3
� p2u ¼ 0

The characteristic set is in general not unique, but the coefficients
c(p) of the input–output equations can be fixed uniquely by normal-
izing the equations to make them monic, for example, by multiply-
ing by p3 [4]:

_y� p1y� p2p3u ¼ 0

Structural identifiability can be determined by testing the injectiv-
ity of the coefficients c(p), i.e. the model (1.1) is globally identifiable
if and only if c(p) = c(p⁄) implies p = p⁄ for arbitrary p⁄ [4]. Thus,
p1 ¼ p�1 and p2p3 ¼ p�2p�3imply that only p1 and p2p3 can be deter-
mined in our example, so the model is unidentifiable.

3. Ritt’s pseudodivision algorithm

Ritt’s pseudodivision is the algorithm that has been more com-
monly used to find the characteristic set of a prime differential
ideal generated by a finite set of differential polynomials [17].
The following procedure follows that in [19].

Let uj be the leader of a differential polynomial Aj, which is the
highest ranking derivative of the variables appearing in that poly-
nomial. A polynomial Ai is said to be of lower rank than Aj if ui < uj

or, whenever ui = uj, the algebraic degree of the leader of Ai is less
than the algebraic degree of the leader of Aj. A polynomial Ai is re-
duced with respect to a polynomial Aj if Ai contains neither the lea-
der of Aj with equal or greater algebraic degree, nor its derivatives.
If Ai is not reduced with respect to Aj it can be reduced by using the
following pseudodivision algorithm:

(1). If Ai contains the kth derivative uðkÞj of the leader of Aj, differ-
entiate Aj k times so its leader becomes uðkÞj .

(2). Multiply the polynomial Ai by the coefficient of the highest
power of uðkÞj and let R be the remainder of the division of
this new polynomial by AðkÞj with respect to the variable
uðkÞj . Then R is reduced with respect to AðkÞj . The polynomial
R is called the pseudoremainder of the pseudodivision.

(3). The polynomial Ai is replaced by the pseudoremainder R and
the process is iterated using Aðk�1Þ

j in place of AðkÞj and so on,
until the pseudoremainder is reduced with respect to Aj.

This algorithm is applied to a set of differential polynomials, render-
ing each polynomial reduced with respect to each other, to form an
auto-reduced set. The result is a characteristic set.

In addition to Ritt’s algorithm, a number of other algorithms
have been developed to find the full characteristic set, such as
the Ritt–Kolchin algorithm [18] and the improved Ritt–Kolchin
algorithm [21]. Software implementations of these algorithms
can be found in the diffgrob2 package [5] or the diffalg package
[6]. However, as noted in [14], ‘‘algorithms to find the characteris-
tic set are still under development and the existing software pack-
ages do not always work well.’’

The DAISY program [4] uses Ritt’s pseudodivision algorithm to
obtain the characteristic set and then the input–output equations,
i.e. the first m equations of the characteristic set. While the DAISY
program is a useful tool in exploring global or local identifiability
properties of systems, the user may want to obtain the input–out-
put equations for other analyses, e.g. for finding identifiable
parameter combinations, as in [9]. Copying the characteristic set
from DAISY into a different symbolic algebra package is cumber-
some due to syntax differences, especially for large systems.

Alternatively, one could implement Ritt’s pseudodivision using
any symbolic algebra package, as it requires only low level sym-
bolic operations, e.g. differentiation and polynomial division.
While this aspect is good from the standpoint of making few de-
mands on the capabilities of a symbolic software system, it has
the negative consequence that the method is time consuming to
implement and prone to implementation errors. Since only the in-
put–output equations – and not the full characteristic set – are
needed for differential algebra identifiability analysis, a simpler
method to obtain just the input–output equations can be quite
helpful. We propose an alternative procedure here that utilizes dif-
ferentiation and Gröbner Bases to ease the implementation
difficulties.

4. Alternative method to find input–output equations

We obtain the input–output relations by taking a sufficient
number of derivatives of the system (1.1), followed by computa-
tion of a Gröbner Basis of the new system, similar to the method
proposed in [15] and [16]. The main difference between our ap-
proach and that proposed in [15] and [16] is that we find a stricter
bound on the minimum number of derivatives of the equations
needed in forming the Gröbner Basis. Following a minimum num-
ber of differentiations of the output equations and corresponding
state variable equations, the Buchberger Algorithm is used to elim-
inate all state variables and derivatives of state variables.

In general, for elimination to work, the number of equations
must be strictly greater than the number of unknowns, as dis-
cussed in [15]. Since the output equation is of the form y(t,p) = g(x
(t,p);p), i.e. always in terms of x and not derivatives of x, then the
first step is to take the derivative of the output equations, to help
eliminate the first derivative of x from the state variable equations.
If this additional equation is not enough to eliminate the state vari-
ables, then the second derivative of the output equations is needed.
This, however, introduces the second derivative of x, and thus
differentiation of the corresponding state variable equations is
needed. Differentiation of the output equations and corresponding
state variable equations is continued until the number of equations
is greater than the number of unknowns. The procedure is de-
scribed by the following steps:

Step 1: Differentiate the output equations to obtain _y and adjoin
these equations to the system.

Step 2: Differentiate the output equations again to obtain €y and
differentiate the corresponding state variable equations to obtain
equations involving €x. Adjoin these equations to the system.

Step k: Differentiate the output equations again to obtain y(k)

and differentiate the corresponding state variable equations to ob-
tain equations involving x(k). Adjoin these equations to the system.

For a single output system, the above steps yield a procedure
similar to that in [15] and [16]. However, the method described
in [15] and [16] does not formally treat multi-output models,
and the procedure we present here does.

We now show that, for a system of n state variables and m
output equations, one need only take n � (m � 1) steps to obtain
a sufficient number of additional equations to eliminate the state
variable terms in a Gröbner Basis. We begin with examples illus-
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