Computer Communications 52 (2014) 82-88

Contents lists available at ScienceDirect

computer

communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Transport layer reneging

@ CrossMark

Nasif Ekiz **, Paul D. Amer"

2F5 Networks, Seattle, WA 98119, United States
b Computer and Information Sciences Department, University of Delaware, Newark, DE 19716, United States

ARTICLE INFO ABSTRACT

Article history:

Received 21 June 2013

Received in revised form 16 April 2014
Accepted 29 May 2014

Available online 12 June 2014

Reneging occurs when a transport layer data receiver first selectively acks data, and later discards that
data from its receiver buffer prior to delivery to the receiving application or socket buffer. Reliable trans-
port protocols such as TCP (Transmission Control Protocol) and SCTP (Stream Control Transmission
Protocol) are designed to tolerate reneging. We argue that this design should be changed because:
(1) reneging is a rare event in practice, and the memory saved when reneging does occur is insignificant,
and (2) by not tolerating reneging, transport protocols have the potential for improved performance as

Keywords: o has been shown in the case of SCTP. To support our argument, we analyzed TCP traces from three differ-
OS fingerprinting . . . L o

Reneging ent domains (Internet backbone, wireless, enterprise). We detected reneging in only 0.05% of the ana-
SACK lyzed TCP flows. In each reneging case, the operating system was fingerprinted thus allowing the
TCP reneging behavior of Linux, FreeBSD and Windows to be more precisely characterized. The average main

memory returned each time to the reneging operating system was on the order of two TCP segments.
Reneging saves so little memory that it is not worth the trouble. Since reneging happens rarely and when
it does happen, reneging returns insignificant memory, we recommend designing reliable transport pro-
tocols to not permit reneging.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Transmission Control Protocol (TCP) [21] and the Stream Con-
trol Transmission Protocol (SCTP) [25] use sequence numbers
and cumulative acks (ACKs) to achieve reliable data transfer. A data
receiver uses sequence numbers to sort arrived data segments.
Data arriving in expected order, i.e., ordered data, are cumulatively
ACKed to the data sender. With receipt of an ACK, the data sender
assumes the data receiver accepts responsibility for delivering
ACKed data to the receiving application, and the data sender
deletes all ACKed data from its send buffer, potentially before that
data are delivered.

The Selective Acknowledgment Option, RFC2018 [16], extends
TCP’s (and SCTP’s) cumulative ACK mechanism by allowing a data
receiver to ack arrived out-of-order data using selective acks
(SACKs). The intent is that SACKed data need not be retransmitted
during loss recovery. SACKs improve throughput when multiple
losses occur within the same window [1,4,9].

Deployment of the SACK option in TCP connections has been a
slow, but steadily increasing trend. In 2001, 41% of the web servers
tested were SACK-enabled [20]. In 2004, SACK-enabled web

* Corresponding author. Tel.: +1 302 2426831.
E-mail addresses: n.ekiz@f5.com (N. Ekiz), amer@udel.edu (P.D. Amer).

http://dx.doi.org/10.1016/j.comcom.2014.05.009
0140-3664/© 2014 Elsevier B.V. All rights reserved.

servers increased to 68% [17]. All inspected operating systems at
the writing of the paper such as FreeBSD 8, Linux 2.6.31, Mac OS
X 10.6, OpenBSD 4.8, OpenSolaris 2009, Solaris 11, Windows 7,
Windows Vista negotiated SACKs by default.

Transport layer data reneging (simply, reneging) occurs when a
data receiver first SACKs data, and later discards that data from its
receiver buffer prior to delivery to the receiving application or
socket buffer. TCP is designed to tolerate reneging. RFC2018 states:
“The SACK option is advisory” and “the data receiver is permitted
to later discard data which have been reported in a SACK option”.
Reneging might happen, for example, when an operating system
needs to recapture previously allocated memory, say to avoid
deadlock, or to protect the operating system against denial-of-ser-
vice attacks (DoS). As will be discussed in detail in this paper,
reneging is implemented in FreeBSD, Linux, Mac OS, and Windows.

Because TCP tolerates reneging, a TCP data sender must retain
copies of all transmitted data in its send buffer, even SACKed data,
until they are ACKed. Then, if reneging does occur, eventually the
sender will (1) timeout on the reneged data, (2) delete all SACK
information, and (3) retransmit the retained copies of the reneged
data. The data transfer thus remains reliable. Unfortunately, if
reneging does not happen, SACKed data is wastefully stored in
the send buffer until ACKed.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2014.05.009&domain=pdf
http://dx.doi.org/10.1016/j.comcom.2014.05.009
mailto:n.ekiz@f5.com
mailto:amer@udel.edu
http://dx.doi.org/10.1016/j.comcom.2014.05.009
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

N. Ekiz, P.D. Amer/Computer Communications 52 (2014) 82-88 83

A similar design to tolerate reneging is adopted by SCTP. The
main difference is that an SCTP data sender is designed to identify
a data receiver that reneges, whereas a TCP data sender is not.
When previously SACKed data are not repeatedly SACKed in the
successive ack, an SCTP data sender infers reneging and marks
reneged data for retransmission [25].

We argue that the transport protocol design to allow reneging
should be changed because: (1) reneging is a rare event in practice,
and the memory saved when reneging does occur is insignificant,
and (2) by not allowing reneging, reliable transport protocols have
the potential for improved performance as has been shown in the
case of SCTP [19,28].

This paper presents a thorough investigation into reneging to
support (1). For that purpose, we herein extend an earlier model
[6] to detect reneging instances in TCP traces. Then we use the
extended model to analyze over 200,000 TCP connections from
three different domains to report the frequency of reneging. For
those connections that do renege, we fingerprint the OS to better
understand how today’s major OS deal with reneging. The amount
of potential gain (i.e., item (2)) by designing TCP to not tolerate
reneging is currently under study [2], and beyond the scope of this
paper.

In Section 2, we further the motivation to detect reneging
instances and present the only past study to investigate reneging
in TCP. Then Section 3 presents our model to detect reneging
instances in TCP trace files. Section 4 presents the TCP trace anal-
ysis and results. Finally, Section 5 presents our recommendation
to change the design of reliable transport protocols.

2. Background and motivation

If a transport protocol were designed not to tolerate reneging
(i.e., to be non-reneging), a data sender would no longer need to
retain copies of SACKed data in its send buffer until ACKed. In that
case, the main memory allocated for the send buffer could be uti-
lized for other data or connections.

Natarajan et al. [19] present send buffer utilization results for
data transfers using non-reneging vs. reneging SCTP under mild
(~1-2%), medium (~3-4%) and heavy (~8-9%) loss rates. For the
bandwidth-delay parameters studied, the memory wasted by
assuming SACKed data could be reneged was on average ~10%,
~20% and ~30% for the given loss rates, respectively.

A non-reneging transport protocol also can improve end-to-end
application throughput. To send new data, in TCP and SCTP, a data
sender is constrained by three factors: a congestion window (con-
gestion control), an advertised receive window (flow control) and a
send buffer. When the send buffer is full, no new data can be trans-
mitted even when congestion and flow control mechanisms allow.
When SACKed data are removed from the send buffer in a non-
reneging protocol, new application data can be read and poten-
tially transmitted earlier increasing throughput.

Yilmaz et al. [28] investigate throughput improvements for non-
reneging vs. reneging SCTP. The authors show that the throughput
achieved with non-reneging SCTP is always > the throughput
observed with reneging SCTP. For example, the throughput for data
transfer over SCTP is improved by ~14% for a data sender with
32 KB send buffer under low (~0-1%) loss rate with non-reneging
SCTP.

In summary, it has been shown if SCTP were designed to not tol-
erate reneging, send buffer utilization would be always optimal,
and application throughput could be improved for data transfers
with constrained send buffers (send buffer < receive buffer). We
believe that while significant differences exist between SCTP and
TCP implementations, these SCTP results will apply to TCP as well
following a modified handling of TCP’s send buffer. SCTP results

however are at best a predictor. A detailed evaluation of non-
reneging TCP over a satellite link is an ongoing research [2].

The key issue for this paper is - in practice, does reneging occur
or not? No one knows what percentage of connections renege. To
the authors’ best knowledge, the only prior study of reneging is
an MS thesis not published elsewhere [3]. The author presents a
reneging detection algorithm for a TCP data sender, and analyzes
TCP traces using the detection algorithm to report frequency of
reneging. The author hypothesized that discarding the SACK score-
board at a timeout may have a detrimental impact on a connection’s
ability to recover loss without unnecessary retransmissions. To
decrease unnecessary retransmissions, an algorithm to detect
reneging at a TCP sender is proposed which clears the SACK score-
board immediately upon detecting reneging instead of waiting until
a timeout. The reneging detection algorithm compares existing
SACK blocks (scoreboard) with incoming ACKs. When an ACK is
advanced to the middle of a SACK block, reneging is detected. The
author indicates reneging can be detected earlier when the TCP
receiver skips previously SACKed data. In such a case, SACKs are
used for reneging detection as in our model detailed in Section 3.

Using traces, the author analyzed TCP connections with SACKs
to report frequency of reneging. Out of 1,306,646 connections ana-
lyzed, the author identified 227 connections (0.017%) as reneged.
These results suggest that reneging is a rare event.

Our objective is to report the frequency of reneging in today’s
Internet. If we observe reneging occurs rarely or never, we will
have evidence to change the basic assumptions of transport layer
protocols. By designing non-reneging transport protocols, we
hypothesize that few (if any) connections will be penalized, and
the large majority of non-reneging connections will potentially
benefit from better send buffer utilization and throughput.

3. A model to detect reneging

To empirically investigate the frequency of reneging, we pres-
ent our extended model and its implementation, RenegDetectv2,
to passively detect reneging instances occurring in TCP traces.

While TCP does not support detecting reneging at a data sender,
SCTP does. In SCTP, when previously SACKed data are not repeat-
edly SACKed in successive acks as is specified, an SCTP data sender
infers reneging. Our initial model to detect TCP reneging extends
SCTP’s reneging detection mechanism [6].

A state of the data receiver’s receive buffer is constructed at an
intermediate router and updated as new acks are observed. The
state consists of a cumulative ACK value (stateACK) and a list of
out-of-order data blocks (stateSACK blocks) known to be in the
data receiver’s buffer. When an inconsistency occurs between the
state of the receive buffer and a new ack, reneging is detected.
Our initial model was introduced in [6], and is now described so
as to understand how and why we needed to extend it.

Fig. 1 illustrates an example reneging scenario, and how our ini-
tial model located at an intermediate router detects reneging.
Three acks are monitored within a data transfer. For simplicity,
data packets are not shown. Without loss of generality, the exam-
ple assumes 1 byte of data is transmitted in each data packet. For
each SACK X-Y, X and Y represent the left edge and right edge of
the SACK, respectively.

On seeing ACK 1 SACK 3-4, our model deduces the state of
receive buffer to be: ordered data 1 is delivered or deliverable to
the receiving application (stateACK 1), and out-of-order data 3-4
are in the receive buffer (stateSACK 3-4). ACK 1 SACK 3-6 updates
this state by adding out-of-order data 5-6 as SACKed (stateSACK
3-6). When ACK 2 SACK 7-7 is received and compared to the state
of receive buffer (stateACK 1, stateSACK 3-6), an inconsistency is

Download English Version:

https://daneshyari.com/en/article/450032

Download Persian Version:

https://daneshyari.com/article/450032

Daneshyari.com

https://daneshyari.com/en/article/450032
https://daneshyari.com/article/450032
https://daneshyari.com

