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a b s t r a c t

Various tumours can be resected even for cure with complete removal. Surgical excision with a wide mar-
gin to ensure complete removal has therefore been suggested as the primary treatment for such lesions.
The histological examination of the three-dimensional (3D) excision margins (3D histology) constitutes an
important part of the quality control mechanisms in tumour surgery. Understanding histologically rele-
vant properties of the constituents of the microenvironment in tumours and the circumferential portion
of non-lesional tissue is therefore critical.

Accompanied by the increasing availability of high performance computers in recent decades, there has
been a strong movement aiming at the development of mathematical models whose implementations
allow in silico simulations of biological reaction networks. Due to its relevance in numerous biological
and pathological processes, there have been various attempts to model biased migration of single cells.
The model introduced in this paper plays a prominent role insofar as it covers the under-represented
3D case. Moreover, it is uniformly formulated for both two and three dimensions. The velocity of each
cell is characterised by a generalised Langevin equation, a stochastic differential equation, where chemo-
taxis as well as contact guidance are considered to simulate selected aspects of interactions between car-
cinoma cell groups and fibroblast-like cells.

Algorithmic and numeric aspects of the developed equations are detailed in this paper and the results
of the simulations are illustrated in different manners to emphasise specific features. A simple test sce-
nario as well as a geometry based on segmentation data of a real histological slide has served for verifi-
cation of the software. The resulting morphologies closely resemble that of desmoplastic stromal reaction
readily identifiable in histological slides of infiltrating carcinoma, and the images can be interpreted in
the context of 3D histology.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Complete removal of various solid tumour entities may help de-
crease recurrence and improve survival of oncological patients.
Resection of a circumferential portion of non-lesional tissue may
therefore be considered a standard surgical procedure in tumour
surgery, and quality control algorithms include the histological
examination of the three-dimensional (3D) excision margins (3D
histology) [1]. Studying the reciprocal interactions between the tu-
mour and the surrounding tissue in 3D therefore appears to be rel-
evant. Various efforts have been made to learn more about the
constituents of this microenvironment, for instance by using 3D
cell culture systems [2,3]. The present study is addressing histolog-
ically relevant facets of this issue by the application of a systems
biological approach.

As recently stated in [4], there exist only a few mathematical
models that deal with three dimensions compared to the planar
case, which focus on biased single-cell migration. Furthermore,
the aforementioned article classifies and discusses the different ap-
proaches by detailing the particular pros and cons. What all these
models which have been presented have in common is the integra-
tion of a certain stochastic influence which seems to be inevitable
to describe single cell migration. Potential sources of this random-
ness are outlined in [5].

Unlike numerous 3D in vitro models [6–8], there is a lack of 3D
in silico simulations in connective tissue research [9]. Computa-
tional models on both the cellular and tissue level, that capture real
scenarios, are particularly lacking. In this paper, we develop an ap-
proach that bridges some of the aforementioned gaps. First of all,
we state that the designed novel system of equations is a general-
isation of a recently published paper limited to two spatial dimen-
sions so far [10]. In the present publication, the corresponding
equations are unified for the d-dimensional case, where either
d 2 {2,3}, i.e., a formal separation of plane and volume becomes
obsolete.
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All biological processes and cell types in this study are inter-
preted as previously published [11–15]. We are describing migra-
tion (GO:0016477) properties of mesenchymal cells (EV:0200171)
such as fibroblasts (EV:0200032) or myofibroblasts (EV:0200119).
In this context it seems to be relevant that these cell types are pro-
ducing collagen (GO:0005581) fibres, and exhibit both positive
chemotaxis (GO:0006935) and contact guidance (GO:0009990).
These cell types are henceforth referred to as fibroblast-like cells
and (by major simplification) assumed to be the only cellular con-
stituents in desmoplastic stromal reaction (DSR).

To obtain a mathematical model and corresponding algorithms,
we are suggesting the use of a combination of the so called force
based dynamics and the persistent random walk [4]. In this context,
we characterise the velocity of a single cell by a generalised Lange-
vin equation, which takes both chemotaxis and contact guidance
into account. As the term chemotaxis denotes the preferred motion
along a chemical gradient, taxis is considered positive if the migra-
tion occurs towards the source of the agent [16,17]. This agent is
then referred to as attractant. Otherwise, the taxis is considered
to be negative and the substance acts as repellent. Contact guidance
is the bi-directional cell migration along physical structures, e.g.,
collagen fibre strands [18]. Fibroblast-like cells, which are in the fo-
cus of this paper, exhibit both positive chemotaxis [15] and contact
guidance [13,14].

This article is organised as follows. Subsequent to this introduc-
tion, we expound the mathematical model, where we briefly out-
line the concepts of [10], which serve as a basis for the stated
generalisations. Section 3 addresses some issues of the numerical
implementation, especially schemes for calculating discrete solu-
tions for the corresponding continuous equations. Furthermore,
the handling of inner and outer boundaries within the volume of
interest (VOI) is discussed. The results are illustrated in Section 4,
where we examine both a simple test scenario and a geometry
based on real segmentation data. In conclusion, this manuscript
ends with a discussion and an outlook on future research.

2. The model

First of all, we emphasise that the subsequently delineated
model does formally not depend on the dimension d 2 {2,3}. We
simply obtain the two-dimensional (2D) case by setting the third
component of each considered quantity (f,rc,Xt,Vt) to zero and
by restricting the weight functions wi to x3 = 0. For a better com-
prehension, we recapitulate in the following some of the main
assumptions noted in [10]; a thorough mathematical derivation
and analysis can be consulted therein. The crawling fibroblast-like
cells are regarded as moving point objects in space, where cell
i 2 {1, . . . ,M} is characterised by its position XðiÞt 2 Rd and its veloc-
ity VðiÞt 2 Rd as functions of time t. In this study, the fibroblast-like
cells react simultaneously on both external stimuli, chemotaxis
and contact guidance whereby their particular influences are inde-
pendently governed by corresponding proportionality factors. We
model the temporal evolution of the cell variables by a stochastic
differential equation (SDE) system,
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where a, b > 0. Furthermore, I is assumed to be the d � d unit matrix
and 0 refers to a zero matrix of appropriate size. The stochastic
influence is governed by the weighting of Wt, which represents a
vectorial standard Wiener process in Rd.

The transposed gradient of the chemical attractant density c at
point x 2 Rd acts as the directional bias in the case of chemotaxis,
i.e., g(t,x) =rc>(t,x). The fibrous part of the extracellular matrix
(ECM) is characterised as a vector field f = f(t,x) which is both

space- and time-dependent. The dynamics of f written in polar
coordinates are described below. However, for contact guidance,
we utilise the force gðt;xÞ ¼ ~fðt;xÞ with (cf. [19])

~fðt;XtÞ ¼
fðt;XtÞ; if hfðt;XtÞ;VtiP 0
�fðt;XtÞ; else

�
:

This definition expresses the mathematical point of view that fibres
have no orientation and that they exert a bi-directional impulse on
cell velocity. Consequently, the cells are always deflected in an
acute angle to the current velocity vector along ~f.

Formally, the force term Text is identical for both modes of taxis,
i.e.
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where, as mentioned above, g is either equal to rc> or to ~f evalu-
ated at (t,Xt). We assume that fibre modification is solely mediated
by migrating fibroblast-like cells. As detailed in [19], we interpret
the Euclidean norm r(t,x) = kf(t,x)k as the mean density and the
normalised vector x(t,x) = f(t,x)/kf(t,x)k as the mean direction of
the fibrous material, i.e., we consider the polar coordinate represen-
tation of f:

f ¼ rx; r 2 Rþ; x 2 Sd�1: ð3Þ

For the moment, we suppose (t,x) to be fixed and define

rðsÞ ¼ kfðt þ s;xÞk and xðsÞ ¼ fðt þ s; xÞ
kfðt þ s; xÞk

as functions of an infinitesimal time increment s P 0. With regard
to a numerical implementation, s will assume the role of the time
step size Dt within the iterative scheme. However, the temporal
evolution of the density is then modelled by the ordinary differen-
tial equation (ODE) [19]

dr
ds
ðsÞ ¼ ðpf � df rðsÞÞ

XM

i¼1

wiðxÞ; ð4Þ

where production rate pf and decay rate df are positive constants.
These dynamics of the scalar-valued densities according to (4) are
identical when compared with the planar case in [10]. In contrast,
an analogous adaptation cannot be accomplished for the fibre ori-
entation since the direction is described by two angles, the azimuth
and the polar angle, and fibre orientation proceeds in planes of
varying orientations.

The value wi(x) 2 [0,1] in (4) reflects the local influence that
fibroblast-like cell i exerts on the ECM at point x. In this paper,
the representation of the weight functions wi = wi(x) varies from
the previous 2D versions (see [19,10]). Whereas the 3D adaptation
of (1) may be considered straightforward, this is not the case for
the weight functions. Thus, their characterisation is a central point
in this study and it will be subsequently presented in detail.

We assume fibroblast-like cells to be producing new fibres,
whose directions are associated with the tangents of the smoothed
and time-lagged versions eXðiÞt�s of the their fluctuating cell trajec-
tory XðiÞt [10]. As a consequence, the mean fibre orientation x is ro-
tated in the direction of eXðiÞt�s. If several cells affect the ECM at a
certain point x, then x(0) – 0 is turned towards the weighted
cumulative velocity vector [10]

V t;x;xð0Þ; Sv eVði1Þt�s;
eVði2Þt�s

� �� �
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� �D E� �
� Sv
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� �
; ð5Þ

where we modified the sign function in such a way that sgn (0) = 1.
Furthermore, vector

SvðVð1Þ;Vð2ÞÞ ¼ w1Vð1Þ þ sgnðhVð1Þ;Vð2ÞiÞw2Vð2Þ ð6Þ
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