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a b s t r a c t

We consider a system of delay differential equations modeling the predator–prey ecoepidemic dynamics
with a transmissible disease in the predator population. The time lag in the delay terms represents the
predator gestation period. We analyze essential mathematical features of the proposed model such as
local and global stability and in addition study the bifurcations arising in some selected situations.
Threshold values for a few parameters determining the feasibility and stability conditions of some equi-
libria are discovered and similarly a threshold is identified for the disease to die out. The parameter
thresholds under which the system admits a Hopf bifurcation are investigated both in the presence of
zero and non-zero time lag. Numerical simulations support our theoretical analysis.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Population biology has its roots in theoretical ecology. By its
very nature it is a science that focuses on understanding, explain-
ing, and predicting changes in the size of populations. The dynam-
ics of the biological populations are captured by mathematical
systems that are mainly expressed, when modeling continuous sit-
uations, by differential equations. Mathematical models render
precise theoretical arguments assessing the factors affecting the
populations’ rate of change. In addition, analysis of such model en-
ables forecasting the profound economic implications of renewable
resources management. They may also suggest successful strate-
gies for biological control. In the last few decades a significant
number of predator–prey models have been proposed and exten-
sively studied. In the natural world, however species do not exists
alone, and moreover are subject to diseases, which are contracted
by interactions with the environment. In addition to purely epide-
miological models, for which some standard classical references
are [1,6], in the past twenty years also systems combining demo-
graphic as well as epidemic aspects have been proposed. Systems
of this type are now known as ecoepidemic models. Several such
studies are reviewed in a number of recent publications
[10,14,17,24]. The importance of parasites influence on the dynam-

ics of plant as well as animal populations is nowadays Dobson and
Crawley recognized Dobson and Crawley [7]. It is recognized that
viruses, bacteria and parasites make their hosts more vulnerable
to predation; see the references in Beltrami and Carroll [2]. Origi-
nated from Venturino [25,26], some more recent studies in this
field are Haque and Venturino [19], Haque et al. [20], Hethcote
et al. [21], and Haque and Greenhalgh [16]. Most of the proposed
models are based on the assumption that the infection affects
the prey. Only in Venturino [27], Haque and Venturino [18], and
Haque [15], has the case of a disease spreading among the preda-
tors been considered.

Many natural and man made processes in biology and medicine
are better modeled using time delays, for some sample references
we refer to MacDonald [23], Gopalsamy [11], Kuang [22], and Be-
retta and Kuang [3]. Since time delays occur in almost every situ-
ation, is not realistic to ignore them. In particular, Kuang [22]
observes that animals take time to digest food, and this delays their
further activities. Thus dynamical models without delays are a
worse approximation of reality than those incorporating time lags.
In view of this fact, in the current work, we consider a Lotka–Vol-
terra type predator–prey ecoepidemic model. We assume the
transmissible disease to affect the predators, and in this species
we also incorporate a delay in gestation of the newborns. This rep-
resents the first attempt of considering the effects of delay for
ecoepidemic models with disease in the predators.

We determine threshold conditions for which the epidemic in
the predator population will be eradicated. The main results of
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our investigation are the stability and bifurcations related to the
two most important equilibria of the ecoepidemic system, namely
the endemic equilibrium, and the disease-free one, which repre-
sents just the coexistence equilibrium of the underlying demo-
graphic model. We also discuss permanence of the ecosystem.

The paper is organized as follows. In Section 2 we state the
model in consideration and the hypotheses on which it is formu-
lated. Section 3 contains some preliminary results, mainly bound-
edness of the solutions for the system both with and without
delays. Then in Section 4 the model with no delay is analyzed,
identifying its equilibria, giving conditions for their feasibility
and stability and discussing the permanence of the ecosystem.
The same issues are studied in Section 5 for the delayed model,
focusing mainly on the two most relevant equilibria, the disease-
free one and the coexistence. Simulations are reported in Section 6,
and a final discussion concludes the paper, Section 7.

2. Basic assumptions and model formulation

To formulate our model, we make the following assumptions.

(A1) The disease spreads among the predator species only by con-
tact. The disease can be transmitted vertically i.e., passing a
disease from parent to offspring, though, but at a later stage
in Section 5 we will drop this assumption. This implies that
the total predator population n(t) consists of susceptible y(t)
and infected z(t) predators, i.e. n(t) = y(t) + z(t).

(A2) In the absence of predators, the prey population x(t) grows
logistically with the intrinsic growth rate r > 0 and carrying
capacity r/B, in which B measures intraspecific competition
of the prey.

(A3) The infected predator population z(t) cannot recover. Their
total death rate d > 0 encompasses natural and disease-
related mortality.

(A4) The disease incidence follows the simple law of mass action.
(A5) The sound and infected predators hunt the prey with differ-

ent searching efficiencies, denoted respectively by m and pm,
with 0 < p < 1. This is due to the fact that sound predators are
more efficient to catch the prey than the infected ones,
weakened by the infection.

(A6) The sound predator population’s birth rate b, due to other
available food sources, and death rate d give a net reproduc-
tion function l = b � d 2 R. The dynamical behavior of the
system for the two possibilities will be discussed separately.

(A7) Reproduction of the predator population after predations is
not instantaneous, but delayed by a constant time lag s > 0
[28,31], due to gestation. The conversion factor of a con-
sumed prey into a sound predator is e (0 < e < 1).

With the above assumptions, our model takes the form in which
all parameters but l are assumed to be positive:

dx
dt
¼ rx 1� x

r=B

� �
�mxy� pmxz ¼ rx� Bx2 �mxy� pmxz; ð2:1Þ

dy
dt
¼ emxðt � sÞyðt � sÞ � ayzþ lyðt � sÞ; ð2:2Þ

dz
dt
¼ azyþ empxðt � sÞzðt � sÞ � dz; ð2:3Þ

with the initial conditions / = (/1,/2,/3) defined in the Banach
space

Cþ ¼ f/ 2 Cð½�s;0�;R3
þÞ : /1ðhÞ ¼ xðhÞ;/2ðhÞ ¼ yðhÞ;/3ðhÞ ¼ zðhÞg;

where x(h) > 0, y(h) > 0, z(h) > 0, h 2 C[�s, 0] are given functions.
The model (2.1)–(2.3) presented above, in absence of time lags

bears some resemblance with the earlier one [27], containing also

only quadratic nonlinearities for the interaction terms, but in
which the epidemics is of SIS type. However, here predators do
not have other food sources nor do they feel the population pres-
sure of the other individuals of the same population. A number
of situations in which possible predators are affected by various
diseases are outlined in [12]. Here we mention just the following
pairs of parasites affecting hosts: rabies and foxes, Vulpes vulpes;
Sarcoptes spp. affecting both foxes and coyotes, Canis latrans; Yer-
sinia pestis and the Prairie dog, Cynomys spp.; Stomoxys calcitrans
and Panthera leo; Aeromonas hydrophila and Alligator mississippien-
sis; in the marine environment we mention Phocine distemper
virus affecting both the common seal, Phoca vitulina and the
striped dolphin, Stenella coeruleoalba.

2.1. Existence and positive invariance

For t > 0 letting, X � ðx; y; zÞT ; F : Cþ ! R3
þ; F ¼ ðF1; F2; F3ÞT , the

system (2.1)–(2.3) can be rewritten as _X ¼ FðXÞ. Here Fi 2 C1(R+),
for i = 1, 2, 3. F1 = rx � Bx2 �mxy � pmxz, F2 = emx(t � s)y(t � s) �
ayz + ly, F3 = ayz + empx(t � s)z(t � s) � dz. For h 2 [�s,0), let
X(h) = (/1(h),/2(h),/3(h)) 2 C+ and /i > 0, i = 1, 2, 3, are given func-
tions. Since the vector function F is a smooth function of the vari-
ables (x,y,z) in the positive octant X0 = {(x,y,z) : x > 0,y > 0,z > 0},
local existence and uniqueness of the system’s solution hold.

Whenever X(h) 2 C+ such that Xi = 0, letting Xt � X(h + t), then it
is easy to check that

F1ðxÞjx¼0;Xt2Cþ P 0; F2ðxÞjy¼0;Xt2Cþ P 0; F3ðxÞjz¼0;Xt2Cþ P 0:

Any solution of the system (2.1)–(2.3) with X(h) 2 C+, say
X(t) = X(t,X(h)), implies that X(t) 2 R3 for all t > 0, [30].

3. Some preliminary results

3.1. Boundedness of the system with zero time lag

Boundedness is a necessary condition for the system (2.1)–(2.3)
to be biologically realistic. The following propositions ensure the
boundedness of the system (2.1)–(2.3) in the limiting case s = 0.

Proposition 3.1. The prey population is always bounded from above.

Proof. From (2.1) the following inequalities follow

dx
dt
6 rx� Bx2 ¼ rx 1� x

r=B

� �
; lim sup

t!þ1
xðtÞ 6 r

B
: �

Proposition 3.2. For l < 0, all solutions of (2.1)–(2.3) starting in X0

are uniformly bounded with an ultimate bound.

Proof. Define a function v = ex + y + z. Taking its time derivative
along the solutions of (2.1)–(2.3), as x(t) 6 r/B, for each
min{�l,d} > / > 0, the following inequality holds

dv
dt
þ /v 6 exðr þ /� BxÞ þ ð/þ lÞyþ ð/� dÞ 6 exðr þ /� BxÞ

¼ eBx
ðr þ /Þ

B
� x

� �
6 e
ðr þ /Þ2

4B
� q:

Integrating the differential inequality; see Birkhoff and Rota [4], we
find

vðtÞ 6 e�/tvðt0Þ þ
q
/
ð1� e�/tÞ

6 max vð0Þ;q
/

� �
; lim sup

t!þ1
vðtÞ 6 q

/
; ð3:1Þ
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