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a b s t r a c t

When examining the structural identifiability properties of dynamic system models, some parameters
can take on an infinite number of values and yet yield identical input–output data. These parameters
and the model are then said to be unidentifiable. Finding identifiable combinations of parameters with
which to reparameterize the model provides a means for quantitatively analyzing the model and comput-
ing solutions in terms of the combinations. In this paper, we revisit and explore the properties of an algo-
rithm for finding identifiable parameter combinations using Gröbner Bases and prove useful theoretical
properties of these parameter combinations. We prove a set of M algebraically independent identifiable
parameter combinations can be found using this algorithm and that there exists a unique rational repa-
rameterization of the input–output equations over these parameter combinations. We also demonstrate
application of the procedure to a nonlinear biomodel.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Parameter identifiability analysis for dynamic system ODE
models addresses the question of which unknown parameters
can be quantified from given input–output data. Unidentifiable
parameters can take on an uncountably infinite number of values
and yet result in identical input–output data. In such cases, the
model and its parameter vector p are underdetermined with
respect to the input–output data. This indeterminacy can be
removed by finding the ‘simplest’ combinations of parameters that
take on a unique or finite number of values, which are then used as
candidates to reparameterize the model, rendering it identifiable.
Thus the question becomes, how can identifiable parameter combi-
nations be found?

This question has been partially answered for several model
classes, under limited conditions. Evans and Chappell [1] and Gunn
et al. [2] adapt the Taylor series approach of Pohjanpalo [3] to find
locally identifiable combinations. Chappell and Gunn [4] use the
similarity transformation approach to generate locally identifiable
reparameterizations. Thus, with these methods identifiability can
only be guaranteed (at least) locally. The problem of finding iden-
tifiable parameter combinations has also been addressed using dif-
ferential algebra methods, as Denis-Vidal et al. [5] and Boulier [6]
find globally identifiable combinations of parameters using an
‘‘inspection’’ method as discussed later in this paper. However, as

shown by Meshkat et al. [7], this method is difficult to implement
as a fully automated computational procedure.

In [7], an algorithm was outlined for finding the ‘simplest’ set of
globally identifiable parameter combinations for a practical class of
nonlinear ODE models. This algorithm extended the method of
Saccomani et al. [8] using a variation of the Gröbner Basis
approach. In this paper, we address several questions that arose
in [7] regarding properties of the identifiable parameter combina-
tions found, including algebraic independence and the existence of
a rational reparameterization of the input–output equations
derived from the original nonlinear model. Although a rational
reparameterization of the original nonlinear model cannot always
be done (as shown in [1]), we prove here that a unique rational
reparameterization of the input–output equations can always be
found over algebraically independent parameter combinations. In
addition to being useful in quantifying the model and exercising
its solutions, we will show that the ability to rationally reparame-
terize the input–output equations leads to a rigorous proof of
identifiability.

2. Nonlinear ODE model

The general form of the models under consideration is:

_xðt;pÞ ¼ f ðxðt;pÞ;uðtÞ; t; pÞ; t 2 ½t0; T�
yðt;pÞ ¼ gðxðt;pÞ; pÞ

ð2:1Þ

Here x is a n-dimensional state variable, p is a P-dimensional
parameter vector, u is the r-dimensional input vector, and y is the
m-dimensional output vector. We assume f and g are rational

0025-5564/$ - see front matter � 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.mbs.2011.06.001

⇑ Corresponding author.
E-mail address: nmeshkat@math.ucla.edu (N. Meshkat).

Mathematical Biosciences 233 (2011) 19–31

Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier .com/locate /mbs

http://dx.doi.org/10.1016/j.mbs.2011.06.001
mailto:nmeshkat@math.ucla.edu
http://dx.doi.org/10.1016/j.mbs.2011.06.001
http://www.sciencedirect.com/science/journal/00255564
http://www.elsevier.com/locate/mbs


polynomial functions of their arguments. Also, constraints reflecting
known relationships among parameters, states, and/or inputs are
assumed to be already included in (2.1), because they generally
affect identifiability properties [9]. For example, p P 0 is common.

3. Identifiability and the differential algebra approach

The question of a priori structural identifiability concerns finding
one or more sets of solutions for the unknown parameters of a
model from noise-free experimental data. Structural identifiability
is a necessary condition for finding parameter values in the real
‘‘noisy’’ data problem, often called the numerical identifiability
problem.

Structural identifiability can be expressed as an injectivity con-
dition, as in [8]. Let y = U(p,u) be the input–output map deter-
mined from (2.1) by eliminating the state variable x. Consider
the equation U(p,u) = U(p⁄,u), where p⁄ is an arbitrary point in
parameter space and u is the input function. If there exists only
one solution p = p⁄, then this corresponds to global identifiability.
If there exists finitely many distinct solutions for p, then this cor-
responds to local identifiability. Infinitely many solutions for p cor-
responds to unidentifiability.

The a priori structural identifiability problem can be solved using
the differential algebra approach of Saccomani et al. [8], which fol-
lows methods developed by Ljung and Glad [10] and Ollivier
[11,12]. Their program, DAISY, can be used to automatically check
global identifiability of nonlinear dynamic models [13]. We note
that DAISY has been applied to mostly low-dimensional systems,
where a ‘‘pseudo-randomly’’ generated numerical value for p⁄ is
used to speed up the computation process [13]. We summarize
their approach below. A detailed description can be found in [7,13].

Using Ritt’s pseudodivision algorithm, an input–output map can
be determined in implicit form. The result of the pseudodivision
algorithm is called the characteristic set [11]. Since the ideal gener-
ated by (2.1) is a prime ideal [14], the characteristic set is a ‘‘min-
imal’’ set of differential polynomials which generate the same
differential ideal as the ideal generated by (2.1) [13]. The first m
equations of the characteristic set are those independent of the
state variables, and form the input–output relations [13]:

Wðy;u;pÞ ¼ 0: ð3:1Þ

The characteristic set is in general non-unique, but the coefficients
of the input–output equations can be fixed uniquely by normalizing
the equations to make them monic [13].

The m equations of the input–output relations W(y,u,p) = 0 are
polynomial equations in the variables u; _u; €u; . . . ; y; _y; €y; . . . with
rational coefficients in the elements of the parameter vector p. Spe-
cifically, these equations involve polynomials from the differential
ring RðpÞ½u; y�, where RðpÞ is the field of rational functions over the
real numbers in the parameter vector p. For each equation, we can
write Wjðy;u;pÞ ¼

P
kcjkðpÞwjkðu; yÞ, where cjk(p) is a rational func-

tion in the parameter vector p and wjk(u,y) is a monomial function
in the variables u; _u; €u; . . . ; y; _y; €y; . . . ; etc. We call cjk(p) the coeffi-
cients of the input–output equations, and for convenience we re-
index the coefficients as ci(p), where 1 6 i 6 l, l is the total number
of coefficients, and l P M, defined below.

To form an injectivity condition, we set W(y,u,p) = W(y,u,p⁄).
Then global identifiability becomes injectivity of the map c(p)
[13]. That is, identifiability is determined by the equations

cðpÞ ¼ cðp�Þ ð3:2Þ

for arbitrary p⁄ [13]. Thus, the model (2.1) is a priori globally iden-
tifiable if and only if c(p) = c(p⁄) implies p = p⁄ for arbitrary p⁄ [13].
The equations c(p) = c(p⁄) are called the exhaustive summary [11].

If there are finitely many distinct solutions for p, then the model
(2.1) is locally identifiable. The model (2.1) is unidentifiable if there

are infinitely many solutions for p, that is, the solution for p is ex-
pressed in terms of one or more free variables. Thus, determining
structural identifiability is reduced to the nature of the solutions
to c(p) = c(p⁄), which is typically solved by finding a Gröbner Basis
and using elimination [13].

4. Some methods for finding identifiable parameter
combinations

We focus on the case when (3.2) has infinitely many solutions
(unidentifiability) in this paper. Unidentifiable models cannot be
quantified from input–output data. A useful alternative is to find
identifiable parameter combinations which can always be deter-
mined from input–output data, and attempt to reparameterize
our model (2.1) in terms of these new parameters. Before we revi-
sit our method for finding identifiable parameter combinations [7],
we briefly present two other methods for finding identifiable
parameter combinations using the differential algebra approach.
Both procedures rely on using the exhaustive summary c(p) = c(p⁄)
to find parameter combinations that are either uniquely or finitely
determined by p⁄.

Definition. Let s be the number of free parameters, defined as the
total number of parameters P minus the number of components M
in any branch of the solution vector to c(p) = c(p⁄). This number is
also defined as the dimension of a variety, and will be discussed in
Section 9.1.

That is, there are s free parameters and M ‘‘non-free’’ parame-
ters, where P = M + s. Sometimes identifiable combinations can
easily be found directly from the solutions to the equations
c(p) = c(p⁄), by algebraically manipulating their solutions to form
M = P � s parameter combinations in terms of p⁄ only. In other
words, find solutions of the form g(p) = g(p⁄). For example, in the
Nonlinear 2-Compartment Model in [7], the solution to c(p) = c(p⁄)
is of the following form, where p = {k21,k12,VM,KM,k02,c1,b1} and
p⁄ = {a,b,c,d,�,f,g}:

VM ¼
cf
c1

k21 ¼ a
k12 ¼ b

b1 ¼
fg
c1

k02 ¼ �

KM ¼
df
c1

Then clearly {c1VM,k21,k12,b1c1,k02,c1KM} are uniquely determined
by p⁄ because we can move the parameter vector p all to one side
of the equation. To verify global identifiability, one would then rep-
arameterize c(p) = c(p⁄) over these parameter combinations
{c1VM,k21,k12,b1c1,k02,c1KM} and check the injectivity condition.

However, this ability to ‘‘move all parameters to one side of the
equation’’ and thus ‘‘decouple’’ our parameter solution cannot
always easily be done, as demonstrated in the Linear 2-Compart-
ment Model below [7], where p = {k01,k02,k12,k21,v} and p⁄ = {a,
b,c,d,�}:

k21 ¼ aþ d� ak02 � abþ dk02 � bd� ac
k02 � b� c

k01 ¼
ak02 � abþ dk02 � bd� ac

k02 � b� c
k12 ¼ �k02 þ bþ c
v ¼ �
Here we see that it takes more effort to find the uniquely deter-
mined parameter combinations {v,k12k21,k02 + k12,k01 + k21}.
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