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a b s t r a c t

Computational simulation models can provide a way of understanding and predicting insect population
dynamics and evolution of resistance, but the usefulness of such models depends on generating or esti-
mating the values of key parameters. In this paper, we describe four numerical algorithms generating or
estimating key parameters for simulating four different processes within such models. First, we describe
a novel method to generate an offspring genotype table for one- or two-locus genetic models for simu-
lating evolution of resistance, and how this method can be extended to create offspring genotype tables
for models with more than two loci. Second, we describe how we use a generalized inverse matrix to find
a least-squares solution to an over-determined linear system for estimation of parameters in probit mod-
els of kill rates. This algorithm can also be used for the estimation of parameters of Freundlich adsorption
isotherms. Third, we describe a simple algorithm to randomly select initial frequencies of genotypes
either without any special constraints or with some pre-selected frequencies. Also we give a simple
method to calculate the ‘‘stable’’ Hardy–Weinberg equilibrium proportions that would result from these
initial frequencies. Fourth we describe how the problem of estimating the intrinsic rate of natural
increase of a population can be converted to a root-finding problem and how the bisection algorithm
can then be used to find the rate. We implemented all these algorithms using MATLAB and Python code;
the key statements in both codes consist of only a few commands and are given in the appendices. The
results of numerical experiments are also provided to demonstrate that our algorithms are valid and
efficient.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Estimating parameters based on measured empirical data is a
critical issue in biosecurity models, such as simulation models of
population dynamics and evolution of resistance in stored-grain
insect pests [12]. These simulation models are based on integrating
sub-models representing different key biological processes, such as
genetic recombination and mortality due to pesticides. Various
parameters for different sub-models must be calculated or esti-
mated before these models are used to predict the effects of differ-
ent possible management strategies. These parameters include: the
chance of certain genotypes being produced as the result of the
mating of certain parent genotypes (which we call offspring geno-
type tables), initial frequencies of genotypes, mortalities of insect
pests under various pesticide doses, and the intrinsic rate of natural

increase of an insect population. These are important parameters
within the sub-models for simulating genetic recombination and
thus determining the genotype of offspring, initialisation of the
population, simulating the effects of pesticide applications and cal-
culating the number of eggs produced by each insect, respectively.

By an offspring genotype table we mean a table that lists all pos-
sible combinations of parental genotypes, and, for each possible
parental combination, gives the expected proportions of offspring
genotypes (see Hedrick’ book [19, p. 76] for an example of this kind
of table, although no formal name is provided in this or other liter-
ature). Such a table is indispensable for a genetic model simulating
evolution of resistance, or other traits. We develop a novel method
to generate the offspring genotype table for a one-locus genetic
model: quantifying all possible genotypes of parents and offspring
and then using a block-matrix multiplication approach to generate
the full table describing the chance of certain genotypes being
produced as the result of the mating of each and every possible
combination of parent genotypes. The offspring genotype tables
for more than one locus are then produced recursively, with the
table for a model with a higher number of loci produced from the
tables for lower numbers of loci. This algorithm for the one- and
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two-locus cases is given in Section 2.1. We also explain how this
algorithm can be extended for models with more than two loci.

Many problems of quantitative inference in biological and tech-
nological research concern the relation between a stimulus (e.g.
phosphine fumigation dose) and a binomial response (e.g. mortality
of insect pests). A binomial generalized linear model, with a link
function such as the probit function (the inverse of cumulative dis-
tribution function), is usually used to analyse the empirical data.
Normally, maximum likelihood estimation or chi-square approxi-
mation is applied to fitting the parameters of such probit models.
In fact, however, in such probit models the probit is a linear function
of parameters or metameter (e.g. log) of parameters and the corre-
sponding equations with respect to the parameters form an over-
determined linear system. We used a generalized inverse matrix
method to find the least-squares solution of the regularization equa-
tions. We describe the method in Section 2.2. This method has
advantages over other methods [4] if we only need to estimate
parameters without other statistical information such as signifi-
cance or confidence intervals for the estimates: it is simple with only
one key command, provides a more accurate estimate of parameters,
and even if the coefficient matrix of the over-determined linear sys-
tem is not numerically (column) full ranked it will still work and
yield a solution with minimum error in the L2 norm sense [4].

In some situations, we may wish to randomly select some or all
of the initial frequencies of genotypes for a biological or genetic
model. These frequencies must satisfy two simple constraints:
each frequency is in the range [0,1] and the sum is equal to 1. In
Section 2.3, we describe how we select the initial frequencies
either without any extra conditions, or with some pre-selected fre-
quencies, or with linear equality and inequality constraints. Also
we give a simple block-matrix multiplication method to calculate
the equilibrium proportions that should result from these initial
frequencies according to the Hardy–Weinberg Principle [29].

The intrinsic rate of natural increase (or development rate) is an
important parameter in modeling the dynamics of an insect popu-
lation. In Section 2.4, we describe how we converted the problem
of estimating this parameter into a root-finding problem and used
a bisection method to find the rate to any desired accuracy.

All the above algorithms are implemented using MATLAB
(www.mathworks.com) and Python (www.python.org) code, using
the Scientific Python library (www.scipy.org), and the key state-
ments and results of numerical experiments are given in Section
3 demonstrating that our algorithms are valid and efficient.

2. Methods

2.1. Quantification of genotypes through block-matrix multiplication
algorithm for creation of offspring genotype table

We developed a novel quantification of genotypes through block-
matrix multiplication algorithm to generate the offspring genotype
tables for a one-locus genetic model. In this section we describe
how this algorithm can be used to induce the two-locus table from
the one-locus table by block-matrix multiplication, and then how
this algorithm can recursively be extended to generate the off-
spring genotype tables for models with more than two loci. Based
on assumptions of random mating and no dependence of inheri-
tance on gender, this algorithm now makes it relatively straightfor-
ward to express genotype frequencies of an insect population as
the proportion of offspring from all possible parental unions that
belong to each genotype. Note that we developed the method in
this paper only for diploid species, i.e. where each locus has two al-
leles, but the idea for developing this algorithm is also suitable for
constructing algorithms for species where each locus has more
than two alleles.

2.1.1. One-locus case
To use computational methods for generating the one-locus off-

spring genotype table, we need to quantify the parental and off-
spring’s genotypes first. In the one-locus case, the two alleles,
dominant ‘‘A’’ and recessive ‘‘a’’, are distributed among offspring
in the usual, binomial ratios. Each mating of ‘‘female parent �male
parent’’ will produce four possible combinations: [each of 2 alleles
of female parent (F1,F2)] � [each of 2 alleles of male parent
(M1,M2)]. For example, the mating Aa � Aa, will produce F1 �M1

: AA, F2 �M1 : aA (=Aa), F1 �M2 : Aa and F2 �M2 : aa. This process
can be obtained by a schematic or a diagrammatic method, known
as the Punnett square, or by constructing a tree diagram [31]. The
Punnett square, named after the geneticist Reginald C. Punnett,
for the above case is shown in Table 1.

Hence the proportions of offspring are equal to 2/4 = 0.5 for
genotype Aa, 1/4 = 0.25 for aa and also 1/4 = 0.25 for AA. It is
important to note that Punnett squares give probabilities only for
genotypes, not phenotypes. The way in which the A and a alleles
interact with each other to affect the phenotype of the offspring
depends on how the gene products (proteins) interact. For classical
dominant/recessive genes, like that which determines whether a
rat has black hair (A) or white hair (a), the dominant allele will
mask the recessive one. Thus in the example above 75% of the off-
spring will be black (AA or Aa) while only 25% will be white (aa).
The ratio of the phenotypes is 3:1.

The proportion of each genotype in the offspring can be calcu-
lated by hand by counting the number of this genotype in the Pun-
nett square or by calculating the probability using a multiplication
rule in the tree diagram [31]. Our more efficient computer-based
method to do this works as follows. First we use numbers to denote
the genotypes of parents: ‘‘1’’ for the allele A and ‘‘2’’ for the allele
a. Then the Aa genotype of female and male parents can be ex-
pressed by the following matrices respectively:

FAa ¼
1
2

� �
; MAa ¼ ½1;2�: ð2:1Þ

The genotypes and numbers of four possible combinations of their
offspring can be generated by matrix multiplication:

FAaMAa ¼
1
2

� �
½1;2� ¼

1 2
2 4

� �
: ð2:2Þ

In the product, which can be regarded as a digitized or quantified
Punnett square, ‘‘1’’ stands for the genotype AA (as 1 � 1 = 1), ‘‘2’’
for Aa (1 � 2 = 2 � 1 = 2) and ‘‘4’’ for aa (2 � 2 = 4). We do not need
to produce all of the ‘‘products’’ of the different genotypes one by
one, instead, the whole offspring genotype table can be obtained
at once by the following process:

(i) Let M be a 1 � 6 matrix (or a 1 � 3 block-matrix) represent-
ing the three possible genotypes of the male parent:

ð2:3Þ

and F = MT (transpose of M) be a 3 � 1 block-matrix representing
the three genotypes of the female parent.

(ii) Then the block-matrix product FM is a 3 � 3 block-matrix
with each block being a 2 � 2 sub-matrix where

ð2:4Þ
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