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a b s t r a c t

Inhaled particles can be either harmful (e.g., smoke, exhaust, viruses) or beneficial (e.g., a therapeutic
drug). The accurate and computationally efficient simulation of particle transport and deposition remains
a challenge because it requires the simultaneous solution of the Navier–Stokes equations and multiple
advection–diffusion mass transport equations when the particles are modeled as multiple mono-dis-
persed populations. The solution of these equations requires that multiple length scales be resolved since
the ratio of advection to diffusion varies among the different equations. Here, the spectral element
method is examined because the high-order approximation provides greater flexibility in resolving mul-
tiple length scales. The problem geometry is based on the Weibel model A of the human airway for con-
vergence tests and the first three generations of a typical rat airway for experimental validation. Particles
in the size range 1 to 100 nm are simulated for deposition results. The particle concentration and flux
were determined using meshes of varying coarseness to represent the geometry along with basis polyno-
mials of order 5 to 11. The higher-order elements accurately propagate the short wavelengths contained
in the advection–diffusion solution without sacrificing efficiency for the more computationally expensive
Navier–Stokes solution. As the diffusion coefficient in the advection–diffusion equation decreases (i.e.,
particle size increases) the advantages of the spectral elements become apparent for the coupled system.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The simulation of nano-particle transport (i.e., 1–100 nm parti-
cles) in the airways requires the solution of both the Navier–Stokes
equations, which are based on an Eulerian reference frame, and
multiple advection–diffusion equations, which are also based on
an Eulerian reference frame. This coupled system of equations is
often referred to as the Eulerian–Eulerian particle tracking prob-
lem, and applications range from pollution concentrations in the
atmosphere to particle deposition in complex airways. Even
though the Navier–Stokes equations and the advection–diffusion
equations have a similar mathematical structure (i.e., both equa-
tions have diffusive and advective terms), the differences between
them for specific problems can make this a computationally chal-
lenging, multi-physics problem. Accurate and efficient particle
tracking through a complex geometry, such as the human airways,
requires capturing the physical properties of both the fluid and
particle fields. The focus here is on the development of an approx-
imation strategy that is highly accurate, scalable, and computa-
tionally efficient.

Many previous models of nano-particle transport in the airways
have been based on 1st- or 2nd-order finite volume or finite differ-

ence methods to resolve the fluid field represented by the Navier–
Stokes equations, and then generating a particle solution as a post-
processing step using a similar method after each time step [1–6].
As we will demonstrate, when the fluid velocity field is turbulent
or the particle concentration transport is advection dominated,
low-order methods are less efficient than high-order methods for
fully resolving all the scales of motions. Most previous studies have
also approximated the turbulent, high-order modes using turbu-
lence models with Reynolds averaged Navier–Stokes equations
(RANS) or subgrid scale models with large eddy simulations (LES).
For weakly turbulent and transition flows, these models may not
adequately represent the fluid solution and lead to an inaccurate
particle solution since the flows lack the inertial subrange needed
for subgrid scale models [7].

Direct numerical simulation (DNS) resolves all the scales of
motion but is computationally expensive and scales with the Rey-
nolds number (�Re9/4) [8]. Low-order methods quickly become
computationally infeasible for even moderate values of the Rey-
nolds number. By using higher-order methods of approximation,
the higher modes of the flow and physical dissipation can be directly
resolved and accurately accounted for with fewer grid points due to
minimal numerical dispersion and diffusion error [9]. Therefore, for
flows of moderate Reynolds numbers (<4000), all scales of motion
can be resolved with modest computational effort. It has been
shown that bifurcating biological flows with Reynolds numbers
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less than 3000 can be fully resolved with high-order spectral
element simulations using one to four million grid points [7,10].

Since the particle solution in the problem of interest is suffi-
ciently dilute (< 100 lg/m3, [11]) and the motion of the particles
does not affect the fluid motion, it is possible to completely decou-
ple the particle solution from the fluid field. For particles larger
than 1 M, particle motion can be tracked by integrating the equa-
tion of motion to ascertain the position. The Lagrangian method
depends on determining the trajectories of many particles to sta-
tistically study the concentration changes over time. This method
has been shown to be useful for tracking larger, more advection
dominated particles. However, the trajectories can become very
complex within even simple flow fields, and it may require inte-
grating millions of particle trajectories to converge to a solution
[12,13]. By treating the particle concentration as a field, rather than
individual particles, the solution can be obtained similarly to the
fluid field [14]. The transport of the particle concentration field is
computed using the advection–diffusion equation, which shares
many mathematical properties with the Navier–Stokes equations.
However, the advection–diffusion equation contains relevant
modes that are much sharper than the Navier–Stokes counterpart
when the diffusion coefficient is significantly less than the inverse
Reynolds number, and the need to properly resolve and propagate
the high-order modes becomes even more important. Spectral ele-
ments, which can capture the higher-order modes with a modest
number of discretization nodes, can be far more effective than
low-order approaches at propagating a particle solution without
overburdening the fluid counterpart by requiring a highly refined
mesh. Spectral elements have been demonstrated to accurately
and efficiently propagate the solution to the advection–diffusion
equation [15,16]. They have also been demonstrated in a coupled
system. However, previous studies either used buoyant particles
or utilized the analogous heat convection–diffusion equation; both
of which have diffusion parameters on the same order as the
inverse Reynolds number[14,17–20].

This study demonstrates the Eulerian–Eulerian method for par-
ticle tracking using high-order spectral elements. The simulations
present the unique issues associated with a coupled system with
diffusion coefficients at least an order of magnitude less than the
inverse Reynolds number. Prior work on the coupled system has
been relatively neglected except for a few cases where the inverse
Reynolds number of the fluid is always equal to the diffusion coef-
ficient or analogous parameter. The problem parameters were cho-
sen to reflect particle deposition in an idealized human central
airway. This problem has been studied by several different groups
using low-order methods and contains weakly turbulent pulsing
flow if the larynx is not included and a turbulent laryngeal jet if
the larynx is included [1,2,12,21]. In some cases, highly accurate
fluid and particle fields are necessary to properly analyze particle
deposition and develop targeted drug delivery systems, and high-
order methods are well suited to these situations. If a highly accu-
rate numerical solution is not needed or if other sources of error
are significant, high-order methods may not be appropriate. This
investigation explores the importance of the mesh, approximation
order, and time-step size in simulating advective particles in an
incompressible fluid field. As validation of the simulation results,
the particle deposition predictions are compared with experimen-
tal results on a rodent’s central airway.

2. Methods

2.1. Spectral element method and discretization

The spectral element method (SEM) contains several key attri-
butes that can be both beneficial and detrimental to the simulation

depending on application. A single mesh can be generated to model
a given domain, and with SEM, the order of approximation can be
changed from one simulation to next without modifying the origi-
nal mesh. SEM adds secondary nodes between element vertices
based on the Gauss–Lobatto–Legendre (GLL) points to create a far
more dense mesh. The number of degrees of freedom for one-
dimension can be defined as n � EN, where E is the number of ele-
ments and N is the order of approximation. For three-dimensions,
n � EN3, and the mesh is isometrically refined with increasing N.
Typical values of N range from 4 – 16, and the nodes are increas-
ingly clustered towards the element boundaries as the polynomial
order is increased [7]. The high-order approximations lead to signif-
icantly lower diffusion and dispersion error than their low-order
counterparts, even with fewer degrees of freedom. Also, due to
the natural matrix-free operator evaluation and tensor-product
meshes, the computation costs scale optimally [22]. These are valu-
able assets when assessing a problem with a large range of scales of
motion, such as particle tracking in turbulent flows.

The SEM method for PN�PN�2 discretization of the Navier–
Stokes equations, where P represents a polynomial of degree N,
is based on the work of Fischer et al. [15,22–24] and Deville et al.
[9] and combined with similar discretization for the advection–dif-
fusion equation. The Navier–Stokes equation in the domain X is

@u
@t
þ u � Du ¼ �rp þ

1
Re
r2u r � u ¼ 0; ð1Þ

where u is a vector representing the velocity field, t is the time, and
p is a pressure that is normalized with density. Eq. 1 requires appro-
priate initial and boundary conditions. The values of velocity, time,
and pressure are all properly scaled and in non-dimensional form
using a characteristic velocity U, length scale L, and the kinematic
viscosity, m. For this work, the characteristic velocity is set to the
average inlet velocity at the peak flow rate, and the characteristic
length scale is set to the inlet diameter of the target geometry.
The kinematic viscosity is taken to be that of air at 20�C. The Rey-
nolds number, Re = UL/v, is a non-dimensional quantity relating
the fluid’s inertial effects to its viscous effects.

Once the velocity field is solved at a given time step, it can be
used in the advection–diffusion equation to determine the particle
concentration. The unsteady advection–diffusion equation,

dCj

dt
þ u � rCj ¼ DjDCj ð2Þ

is also subject to appropriate initial and boundary conditions. Here
the u is the divergence free velocity field computed previously with
the Navier–Stokes equations (Eq. 1). The concentration of mono-
dispersed particles is the scalar, C, and D is the diffusion coefficient,
which is dependent upon the physical characteristics of the particle
(e.g., particle size and shape). In this case, the diffusion coefficient is
a dimensionless quantity representing the ratio of particle diffusion
to advection. Multiple unsteady advection–diffusion equations are
required to model a poly-dispersed particle flow.

The advection–diffusion equation is mathematically similar to
the Navier–Stokes equations except that it is propagating a scalar
species rather than a vector quantity, and it lacks the pressure term
and continuity constraint. The discretization is similar to that
described previously for the Navier–Stokes equations. Since the
advection–diffusion calculation is passive and does not affect the
fluid velocity field, it can be solved multiple times for various val-
ues of the diffusion coefficient at each time step without re-
computing the velocity solution. Thus, a wide range of particle size
concentrations can be determined without the repeated computa-
tional burden that is associated with the Navier–Stokes equations.
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