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a b s t r a c t

Recent studies have yielded insights into structure–function relations in genetic regulatory networks.
Models of feed-forward loops show that the input–output behavior depends critically on the input signal
as well as transcription interactions. Models of induction of the lac operon in Escherichia coli reveal the
importance of metabolism in determining genetic regulatory network behavior. Combined experimental
and computational studies of activation by MarA in E. coli show how mechanisms of transcription regu-
lation, hidden at the level of genetic regulatory networks, can influence behavior. Together these studies
illustrate that gene regulation is critically influenced by factors beyond the topology of genetic regulatory
interactions. Prediction of the specific information processing roles of gene circuits is more difficult than
we would like, but it is still possible. Thinking about evolution of proteins and networks might make it
easier.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Cells control their destiny by tuning the production of RNA and
proteins. This tuning process is known as gene regulation. Gene
regulation works in many different ways and can involve the inter-
action of a variety of factors including proteins, DNA, RNA, and
small molecules. An important mechanism of gene regulation is
transcription regulation, in which proteins called transcription fac-
tors bind to DNA near target genes and either increase or decrease
production of mRNA.

The functional binding between a transcription factor and a
specific location on the DNA specifies a transcription interaction.
The interaction might have an associated sign to indicate whether
it increases (+) or decreases (�) transcription of the target gene. A
transcriptional regulatory network (TRN) is defined by a set of
these interactions. A major challenge in molecular biology is to
predict how the interactions represented by a cell’s TRN work to-
gether to dynamically govern cellular behavior.

A cell’s entire TRN is too large to manage without the aid of
computers, so there are databases that hold the information. There
are 2594 interactions involving 179 TFs in Escherichia coli docu-
mented in release 6.7 of the RegulonDB database [1]. Some local re-
gions of the E. coli network have been extensively characterized
[2]. Some of these regions are wired into gene circuits that have
a well-defined input and output signal, and many of these circuits
perform similar functions, such as producing catabolic enzymes
when substrate levels are high, or blocking production of anabolic
enzymes when product levels are high. There are preferred
patterns in the wirings of different circuits that perform similar

functions. Some wiring patterns perform their functions better
than others, which explains some of the preferences [3].

Our knowledge of the transcription regulation network of E. coli
and other organisms is extensive but incomplete. Nevertheless,
this has not held back global statistical analysis of TRNs. The num-
ber of TFs controlling each gene in the known yeast network is
exponentially distributed, and the number of genes each TF con-
trols is governed by something closer to a power-law distribution
[4]. Most TFs in E. coli block expression of their own gene [5]. Some
recurring wiring patterns in local regions of the E. coli TRN, called
network motifs, appear to be found more often than would be ex-
pected by a random chance model [6]. The same is true for the
yeast TRN [7,8].

Even though our knowledge of the TRNs of E. coli and yeast is
extensive, many of the functions carried out by these and other
TRNs remain unknown. Experiments to reveal these functions are
generally time consuming and costly. It would help enormously
if we could identify the functions from the local wiring patterns
of the TRN, like looking up the input–output function of an inte-
grated circuit in the manufacturer’s manual.

A major obstacle to identifying the function of a wiring pattern
is the need to identify the input signal and how it interacts with
the TRN. For example, consider the wiring pattern in Fig. 1A where
a transcription factor X represses expression of both X and Y. The
function depends on how the signal S interacts with the circuit.
If S blocks repression of X (Fig. 1B) then an increase in S leads to
an increase in X and a decrease in Y. If instead S blocks repression
of Y (Fig. 1C) then an increase in S has no effect on X and leads to an
increase in Y. If S blocks repression of both X and Y (Fig. 1D) then
an increase in S leads to an increase in X, but the effects of X and S
on Y are opposite, making the total effect on Y uncertain in the
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absence of additional information. If X is the input signal itself then
in this case we have all of the information we need, but there are
more complicated circuits involving feedback loops where the ef-
fect of X on Y would still be ambiguous without more information.

The example in Fig. 1 raises a general question: What informa-
tion do we need to determine the functions of a gene circuit? Here I
review several studies that address this question. The first section
examines the functions of feed-forward loop gene circuits [9,10].
The second examines the role of metabolism in determining gene
circuit function [11]. The third examines regulation of different
promoters by the same global transcription factor [12,13]. I will
conclude by summarizing what these studies tell us about deter-
mining gene circuit function, and describe some related work
and ideas. In particular, we should seek help from comparative
genomics and evolutionary arguments.

2. Multiple functions of feed-forward loops

Shen-Orr et al. [14] found that some recurring wiring patterns
in local regions of the E. coli TRN, called network motifs, appear
to be found more often than would be expected by a random
chance model. Similar motifs were found in the yeast TRN [7,8].
One of these motifs is the feed-forward loop (FFL) where Y regu-
lates Z and X regulates both Y and Z. The FFL with all positive reg-
ulatory interactions can act as a sign-sensitive accelerator, e.g., in
response to a change in an input signal, the level of Z ramps up fas-
ter than it ramps down [14]. The FFLs with other combinations of
regulatory interactions have been associated with other functions
[15]. If the functions of these and other network motifs were ro-
bust they would provide enormous insight into the functions of
TRNs [16,17]. How robust are they?

To gain insight into the robustness of network motif functions,
we analyzed a comprehensive set of FFL models [9]. The models
spanned eight combinations of regulatory interactions (positive
or negative for each of the three interactions), and 27 combinations
of input signal effects (enables, blocks, or has no influence on each
of the three regulatory interactions). The dynamics of each of the
216 ( = 8 � 27) models were simulated in response to a timed pat-
tern of step changes between a high and low level of the input sig-
nal. Wide ranges of parameter values were sampled for each
model. The FFL functions were clustered using a greedy algorithm,
and the quality of the clustering vs. the number of clusters was
evaluated using the maximum cluster radius as an error measure
(see [9] for details of the method). In each case the error decreased
sharply as the number of clusters increased to a break point after
which the error decreased less sharply. This break point was iden-
tified and used to select a single number of clusters among the
many possible choices.

The FFL functions clustered into about 15 distinguishable phe-
notypes (Fig. 2), which is more than 10 times fewer than the num-
ber of models, but about twice as many as the number of
combinations of genetic regulatory interactions. The robustness
of each circuit was quantified by calculating the Shannon entropy
of its phenotype distribution, defined as

S ¼ �
XNc

i¼1

pilog2pi; ð1Þ

where pi is the fraction of functional responses that fall into cluster
i, and Nc is the total number of clusters. None of the FFLs had a ro-
bustly determined phenotype without specifying the input signal
effects. Some circuits exhibited just one possible phenotype (S = 0)
when both the regulatory interactions and the input signal effects
were specified and were thus highly robust. Other circuits still
exhibited a handful of phenotypes (typically between 2 and 5).
For the latter circuits typical entropies of the phenotype distribu-
tions were between 0.5 and 2 bits, indicating that their functions
are not robust. Our finding that network motifs can exhibit multiple
functions was supported by a computational study of the bi-fan net-
work motif by Ingram et al. [18]. Mugler et al. [19] similarly found
that the functions of circuits involving three cascading transcription
interactions, each controlled by its own signal, could exhibit a rich
functional repertoire.

To further characterize the robustness of FFL functions, we ana-
lyzed the FFL with all negative regulatory interactions (known as
the type 2 incoherent FFL [15]) in greater detail [10]. We identified
three possible examples of this type of FFL in E. coli: galR-galS-
galETKM;exuR-uxuR-uxuAB; and gntRKU-idnDOTR-gntKU. (The ele-
ments of each FFL are listed in the order x–y–z.) A comprehensive
set of signal effects were considered. Time-dependent patterns of
step changes in the input signal, this time including an intermedi-
ate as well as high and low signal levels, were used to simulate the
dynamics. The resulting time courses were clustered to define a set
of dynamical phenotypes. A complementary set of steady-state
phenotypes was obtained by calculating the steady-state output
pattern that results from a given time ordering of step changes in
the input signal and classifying it according to the time ordering
of high, low, and intermediate outputs.

The output behaviors of this FFL were highly diverse. The FFL
exhibited all possible steady-state phenotypes in response to a
low–intermediate–high–intermediate–low pattern of step changes
in the input signal. Even specifying the input signal was not suffi-
cient to uniquely determine the phenotype: entropies of the phe-
notype distributions varied between about 0.6 and 2.5 bits. Many
parameter value combinations yielded non-functional circuits:
the percentage varied from 17% to 84% depending on the input
signal effects. Analysis of the dynamical phenotypes revealed a

Fig. 1. Multiple functions of an elementary gene circuit. (A) Transcriptional regulatory interactions without a signal interaction. (B) The input signal S blocks repression of X.
When S increases X increases and Y decreases. (C) S blocks repression of Y. When S increases X stays the same and Y increases. (D) S blocks repression of both X and Y. When S
increases X increases and the effect on Y is uncertain without more information.
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