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a b s t r a c t

Population dynamics are almost inevitably associated with two predominant sources of variation: the
first, demographic variability, a consequence of chance in progenitive and deleterious events; the second,
initial state uncertainty, a consequence of partial observability and reporting delays and errors. Here we
outline a general method for incorporating random initial conditions in population models where a deter-
ministic model is sufficient to describe the dynamics of the population. Additionally, we show that for a
large class of stochastic models the overall variation is the sum of variation due to random initial condi-
tions and variation due to random dynamics, and thus we are able to quantify the variation not accounted
for when random dynamics are ignored. Our results are illustrated with reference to both simulated and
real data.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Often the initial state of population processes is not known with
certainty. This can happen because of delays and inaccuracies in
reporting, partial observability, and difficulties in assessing the ac-
tual population size. The initial state is often assumed to be known,
or approximated and then treated as known, in which case math-
ematical models can give only partial information about dynamics
and do not describe the full range of behaviour that may be exhib-
ited. This may lead to inaccurate predictions and result in the
implementation of non-optimal control actions.

Kegan and West [25] addressed this issue, in the context of the
SI (susceptible-infectious) epidemic model, by investigating the
effect of random initial conditions on the state of the deterministic
SI model. Using the Beta distribution to model the initial propor-
tion of infectives, they obtained explicit information about the dis-
tribution of the proportion of susceptibles at any time during the
epidemic, as well as the distribution of the time until a given pro-
portion of the population remains susceptible. We explain how
their approach can be extended to allow initial state uncertainty
to be incorporated in general population processes where a deter-
ministic model is sufficient to describe the dynamics of the popu-
lation, thus allowing one to model variability in dynamics, at any
point in time, due solely to uncertainty in the initial state. For
one-dimensional processes, such as those used for modelling sex-
ually transmitted infections [2] and hospital-acquired infections
[36], and a range of single-species population models, we demon-

strate how this can be effected without the need to exhibit the tra-
jectories explicitly. We illustrate our results with reference to
several population models.

We also consider a wide class of stochastic models, called den-
sity-dependent processes, for which there are natural deterministic
analogues, and summarise results that quantify variation not
accounted for when demographic variability is ignored. Many
models appearing in the ecology and epidemiology literature be-
long to this class. Our purpose here is simply to delineate and
quantify variation due to initial state uncertainty and variation
due to random dynamics, rather than to study the approximations
in detail. The ability to delineate variability in this way has been
shown to be of great importance in understanding both population
and disease dynamics [13,17,20,32]. We illustrate these results for
several population models, including a detailed study of simulated
data from a model for disease spread in metapopulations, and real
data on the prevalence of HIV antibodies in homosexual men
[3,25].

2. Initial state uncertainty in deterministic models

We outline how to account for initial state uncertainty in a gen-
eral population modelling context. Let nt be the state of our process
at time t, and assume that nt lies in some subset S of ZD (the D-dimen-
sional integer lattice). This would typically be a vector of numbers of
individuals of various types (D in total). Suppose also that there is a
parameter N, which would usually be related to the size of the sys-
tem (for example N might be a population ceiling), such that
xt ¼ nt=N can be interpreted as a vector of population densities, and
that we have identified an appropriate deterministic model for xt .
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We will suppose that xt ¼ xtðx0Þ satisfies the ordinary differential
equation

x0s ¼ FðxsÞ ðxs 2 E;0 6 s 6 tÞ; ð1Þ

where the function F : E! RD is specified and E is an appropriate
subset of RD (D-dimensional Euclidean space). For example, if the
state xt were a vector of proportions, such as the proportions of
individuals of various types, then it would be natural to take
E ¼ ½0;1�D.

We will exploit the standard change of variable technique to as-
sess the effect of assuming that the initial state is random. Let
X ¼ ðX1; . . . ;XDÞ be a D-dimensional random vector whose probabil-
ity density function (pdf) fX is specified, and let g : RD ! RD be an
injective (one-to-one) map with continuous first partial derivatives.
Denote by @gðxÞ the Jacobian matrix ð@giðxÞ=@xjÞ. Then, the pdf of
Y ¼ ðY1; . . . ; YDÞ, where Y ¼ gðXÞ, is given by fYðyÞ ¼ jJðyÞjfXðg�1ðyÞÞ,
y 2 RD, where JðyÞ is the Jacobian of g�1ðyÞ (the determinant of
@g�1ðyÞ) and jJðyÞj is its absolute value (see for example [21, Section
4.7]). If the map is not injective, then it is usually possible to partition
the domain into regions over which the map is injective.

Now think of the initial state as being a random variable X0 with
a specified pdf f0. In determining the action of the map
gtðx0Þ ¼ xtðx0Þ (for simplicity, assumed to be injective) on f0, we ob-
tain a pdf ft that summarises the effect of random initial conditions
in our population: for any t > 0,

ftðyÞ ¼ jJtðyÞjf0ðg�1
t ðyÞÞ ðy 2 RtÞ; ð2Þ

where JtðyÞ is the Jacobian of g�1
t ðyÞ and Rt ¼ gtðEÞ is the image of E

under gt . We emphasise that ft is the pdf of the state of our process
at time t, assuming deterministic dynamics with an initial pdf f0.

Since our trajectory satisfies (1) with F specified, we can often
take this a step further. In the one-dimensional case ðD ¼ 1Þ we
can exhibit ft explicitly. Let LðuÞ be the primitive LðuÞ ¼R u dw=FðwÞ. Suppose L is injective, so that L�1 is well defined (it is suf-
ficient that F be everywhere positive or everywhere negative). Then,
the solution to (1) can be written xtðx0Þ ¼ L�1ðt þ Lðx0ÞÞ. The Jacobian
can also be evaluated. Since gtðxÞ ¼ y if and only if LðyÞ � t ¼ LðxÞ, we
get g�1

t ðyÞ ¼ L�1ðLðyÞ � tÞð¼ g�tðyÞÞ, and so

JtðyÞ ¼
d

dy
L�1ðLðyÞ � tÞ ¼ ðL�1Þ0ðLðyÞ � tÞL0ðyÞ ¼ L0ðyÞ

L0ðL�1ðLðyÞ � tÞÞ

¼ FðL�1ðLðyÞ � tÞÞ
FðyÞ ;

where here we have used the inverse function theorem, ðL�1Þ0ðyÞ ¼
1=ðL0ðL�1ðyÞÞÞ, together with L0 ¼ 1=F. Therefore, from (2),

ftðyÞ ¼
FðL�1ðLðyÞ � tÞÞ

FðyÞ

�����
�����f0ðL�1ðLðyÞ � tÞÞ: ð3Þ

We will illustrate these results in Section 5.
The corresponding expected value mt and covariance matrix Vt

of the state of the process at time t can be evaluated either directly
from (2) or from (3), or via the trajectory xtðx0Þ:

mt ¼ ExtðX0Þ ¼
Z

E
xtðuÞf0ðuÞdu ð4Þ

and, taking xtðuÞ and mt to be row vectors,

Vt ¼ CovðxtðX0ÞÞ ¼
Z

E
xtðuÞ>xtðuÞf0ðuÞdu�m>t mt ; ð5Þ

where > denotes transpose.
One might expect that in most instances ft would be a poor

model for the state of the population at time t, because random-
ness in the dynamics of the process (demographic variability) is
not taken into account. The effect of ignoring random dynamics

would be particularly pronounced when t becomes large, for it
quickly becomes the only source of variation. Suppose that the tra-
jectory xtðx0Þ approaches an equilibrium point xeq of (1) (that is,
FðxeqÞ ¼ 0 and xeq is stable). Then, it is clear from (4) and (5) that,
under mild conditions (for example, xtðuÞ monotonic in t,
ExtðX0Þ <1 or E finite), mt ! xeq and Vt ! 0 as t !1 (that is,
the randomness induced by the initial distribution disappears).
Thus, it would be useful to quantify demographic variation and
to be able to delineate this and initial state uncertainty. This will
be achieved for a wide class of stochastic population models,
termed density dependent, using properties of conditional expecta-
tion coupled with the idea of a diffusion approximation, whereby
the process is approximated by a simpler one (a Gaussian diffu-
sion) whose properties can be exhibited explicitly in terms of the
parameters of the original model.

3. Density-dependent population models

Our population process ðnt ; t P 0Þ is now assumed to be a contin-
uous-time Markov chain with state space S # ZD. We let qðm;nÞ de-
note the rate at which the process moves from state m to state n
for n – m and set qðm;mÞ ¼ �qðmÞ, where qðmÞ ¼

P
n–mqðm;nÞ

ð<1Þ is the total rate at which the process leaves state m.
We will suppose that population process is density dependent in

the sense of Kurtz [26]: there is a parameter N with the property

qðn;nþ lÞ ¼ Nf
n
N
; l

� �
ðn;nþ l 2 SÞ; ð6Þ

for suitable functions f ðx; lÞ; x 2 E, where E is a subset of RD. As be-
fore, N will usually be related to the size of the system and n=N will
usually be interpreted as a population density (or vector of popula-
tion densities). Condition (6) stipulates that nt changes at a rate that
depends on nt only through (the density) Xt ¼ nt=N, a property
shared by a wide variety of models that arise in areas as diverse
as ecology [39,41,42,44], epidemiology [6,12,24,47], parasitology
[37], chemical kinetics [4,28,34,40], telecommunications [38,45]
and random graphs [14,51]. Notice that the density process
ðXt; t P 0Þ, being itself a Markov chain, takes values in the set E
no matter what the value of N.

Before proceeding, we note that there is a larger class of models
termed asymptotically density dependent [37], where more general
dependence on N is permitted, but which disappears in the limit
as N gets large. All of the results presented below carry over with-
out change.

Now, a formal argument based on the forward equations (the
master equation) for state probabilities shows that
ðd=dtÞEXt ¼ EFðXtÞ, where

FðxÞ ¼
X
l–0

lf ðx; lÞ ðx 2 EÞ; ð7Þ

suggesting that (6) entails a law of motion of the kind (1) for the
mean path mt ¼ EXt . However, it is not generally true that
m0t ¼ FðmtÞ. For example, the SI model has FðxÞ¼�bxð1�xÞ; x2 E,
where b is the transmission rate (see Section 5), and therefore
m0t ¼ FðmtÞþbVarðXtÞ. This was observed by Isham [23] and
exploited in West and Thompson’s study [50], where they argued
that the variance is small when the initial number of susceptibles
is large. In fact this is true in great generality, being a consequence
of the basic limit theorems of Kurtz [26,27], which we will now de-
scribe. These results allow us to identify the most appropriate
approximating deterministic model and to quantify variation not
accounted for when random dynamics are ignored. As N will vary,
we need to make the dependence on N explicit in our notation;
we write XðNÞt ¼nt=N.

Suppose that F, given by (7), is Lipschitz on E, that is, for some
positive constant KE; jFðxÞ � FðyÞj < KEjx� yj; x; y 2 E (true for
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