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a b s t r a c t

We show that the Bayesian star paradox, first proved mathematically by Steel and Matsen for a specific
class of prior distributions, occurs in a wider context including less regular, possibly discontinuous, prior
distributions.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In phylogenetics, a particular resolved tree can be highly sup-
ported even when the data is generated by an unresolved star tree.
This unfortunate aspect of the Bayesian approach to phylogeny
reconstruction is called the star paradox. Recent studies highlight
that the paradox can occur in the simplest nontrivial setting,
namely for an unresolved rooted tree on three taxa and two states,
see Yang and Rannala [7] and Lewis et al. [1]. Kolaczkowski and
Thornton [2] presented some simulations and suggested that arti-
factual high posteriors for a particular resolved tree might disap-
pear for very long sequences. Previous simulations in [7] were
plagued by numerical problems, which left unknown the nature
of the limiting distribution on posterior probabilities. For an intro-
duction to the Bayesian approach to phylogeny reconstruction we
refer to chapter 5 of Yang [5].

The statistical question which supports the star paradox is
whether the Bayesian posterior distribution of the resolutions of
a star tree becomes uniform when the length of the sequence tends
to infinity, that is, in the case of three taxa and two states, whether
the posterior distribution of each resolution converges to 1/3. In a
recent paper, Steel and Matsen [3] disprove this, thus ruining
Kolaczkowski and Thornton’s hope, for a specific class of branch
length priors which they call tame. More precisely, Steel and Mat-
sen show that, for every tame prior and every fixed e > 0, the pos-
terior probability of any of the three possible trees stays above
1 � e with non vanishing probability when the length of the se-
quence goes to infinity. This result was recognized by Yang [6]

and reinforced by theoretical results on the posterior probabilities
by Susko [4].

Our main result is that Steel and Matsen’s conclusion holds for a
wider class of priors, possibly highly irregular, which we call
tempered. Recall that Steel and Matsen consider smooth priors
whose densities satisfy some regularity conditions.

The paper is organized as follows. In Section 2, we describe the
Bayesian framework of the star paradox. In Section 3, we define the
class of tempered priors on the branch lengths and we state our
main result. In Section 4, we state an extension of a technical lem-
ma due to Steel and Matsen, which allows us to extend their result.
In Section 5, we prove our main result. Section 6 is devoted to the
proofs of intermediate results. In Appendix A, we prove that every
tame prior, in Steel and Matsen’s sense, is tempered, in the sense of
this paper, and we provide examples of tempered, but not tame,
prior distributions. Finally, in Appendix B, we prove the extension
of Steel and Matsen’s technical lemma stated in Section 4.

2. Bayesian framework for rooted trees on three taxa

We consider three taxa, encoded by the set s = {1,2,3}, with two
possible states. Phylogenies on s are supported by one of the four
following trees: the star tree R0 on three taxa and, for every taxon i
in s, the tree Ri such that i is the outlier. Relying on a commonly
used notation, this reads as

R1 ¼ ð1; ð2;3ÞÞ; R2 ¼ ð2; ð1;3ÞÞ; R3 ¼ ð3; ð1;2ÞÞ:

The phylogeny based on R0 is specified by the common length of its
three branches, denoted by t. For each i in s, the phylogeny based on
Ri is specified by a pair of branch lengths (te,ti), where te denotes the
external branch length and ti the internal branch length, see Fig. 1.
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For instance, in the phylogeny based on R1, the divergence of
taxa 2 and 3 occurred te units of time ago and the divergence of
taxon 1 and a common ancestor of taxa 2 and 3 occurred ti + te

units of time ago.
We assume that the sequences evolve according to a two-state

continuous-time Markov process with equal substitution rates
(which we may take to equal 1) between the two character states.

Four site patterns can occur. The first one, denoted by s0, is such
that a given site coincides in the three taxa. The three others, de-
noted by si with i in s, are such that a given site coincide in two
taxa and is different in the third taxon, which is taxon i. In other
words, if one writes the site patterns in taxa 1, 2 and 3 in this order
and x and y for any two different characters,

s0 ¼ xxx; s1 ¼ yxx; s2 ¼ xyx; and s3 ¼ xxy:

Let {s0,s1,s2,s3} denote the set of site patterns in the specific case de-
scribed above of three taxa and two states evolving in a two-state
symmetric model. Assume that the counting of site pattern si is ni.
Then n = n0 + n1 + n2 + n3 is the total length of the sequences and,
in the independent two-state symmetric model considered in this
paper, the quadruple (n0,n1,n2,n3) is a sufficient statistics of the se-
quence data. We use the letter n to denote any quadruple
(n0,n1,n2,n3) of nonnegative integers such that jnj ¼ n0 þ n1þ
n2 þ n3 ¼ n P 1.

For every site pattern si and every branch lengths (te, ti), let pi(-
te, ti) denote the probability that si occurs on tree R1 with branch
lengths (te, ti). Standard computations provided by Yang and Rann-
ala [7] show that

4p0ðte; tiÞ ¼ 1þ e�4te þ 2e�4ðtiþteÞ;

4p1ðte; tiÞ ¼ 1þ e�4te � 2e�4ðtiþteÞ;

4p2ðte; tiÞ ¼ 4p3ðte; tiÞ ¼ 1� e�4te :

Let T ¼ ðTe; TiÞ denote a pair of positive random variables repre-
senting the branch lengths (te, ti), and N ¼ ðN0;N1;N2;N3Þ denote
a quadruple of integer random variables representing the counts
of sites patterns n ¼ ðn0;n1;n2;n3Þ.

3. The star tree paradox

Assuming that every taxon evolved from a common ancestor,
the aim of phylogeny reconstruction is to compute the most likely
tree Ri. To do so, in the Bayesian approach, one places prior distri-
butions on the trees Ri and on their branch lengths T ¼ ðTe; TiÞ.

3.1. Main result

Let PðN ¼ njRi;TÞ denote the probability that N ¼ n assuming
that the data is generated along the tree Ri conditionally on the
branch lengths T ¼ ðTe; TiÞ. One may consider R1 only since, for

every n ¼ ðn0;n1;n2;n3Þ, the symmetries of the setting yield the
relations

PðN ¼ njR2;TÞ ¼ PðN ¼ ðn0;n2;n3;n1ÞjR1;TÞ;

and

PðN ¼ njR3;TÞ ¼ PðN ¼ ðn0;n3;n1;n2ÞjR1;TÞ:

Notation 3.1. For every site pattern si, let Pi denote the random
variable

Pi ¼ piðTÞ ¼ piðTe; TiÞ:

For every i in s and every n, let PiðnÞ denote the random variable

PiðnÞ ¼ Pn0
0 Pni

1 P
njþnk
2 ; with fi; j; kg ¼ s:

We recall that P2 = P3 and we note that, if jnj ¼ n0 þ n1 þ n2 þ n3 ¼ n
with n P 1, then, for every i in s,

PiðnÞ ¼ Pn0
0 Pni

1 Pn�n0�ni
2 :

Fix n and assume that jnj ¼ n0 þ n1 þ n2 þ n3 ¼ n with n P 1. For
every i in s, the posterior probability of Ri conditionally on N ¼ n is

PðRijN ¼ nÞ ¼ n!

n0!n1!n2!n3!

1
PðN ¼ nÞEðPiðnÞÞ:

Thus, for every i and j in s,

PðRijN ¼ nÞ
PðRjjN ¼ nÞ ¼

EðPiðnÞÞ
EðPjðnÞÞ

:

For every e > 0 and every i in s, let N e
i denote the set of n such that,

for both indices j in s such that j – i,

EðPiðnÞÞP ð2=eÞEðPjðnÞÞ:

One sees that, for every i in s and n in N e
i ,

PðRijN ¼ nÞP 1� e;

which means that the posterior probability of tree Ri among the
three possible trees is highly supported.

Recall that, under hypothesis R0 and for a tame prior distribu-
tion on T ¼ ðTe; TiÞ, Steel and Matsen prove that, for every i in s,
PðN 2 N e

i Þ does not go to 0 when the sequence length n goes to
infinity, and consequently that the posterior probability PðRijNÞ
can be close to 1 even when the sequence length n is large.

As stated in the introduction, our aim is to prove the same result
for tempered prior distributions of T ¼ ðTe; TiÞ, which we now
define.

Notation 3.2.

(1) For every s 2 [0,1] and z 2 [0,3], let

Gðz; sÞ ¼ P e�4Te ð1� e�4TiÞ 6 sje�4Te ð1þ 2e�4Ti Þ ¼ z
� �

:

Fig. 1. The four rooted trees for three species.

M. Falconnet / Mathematical Biosciences 228 (2010) 90–99 91



Download English Version:

https://daneshyari.com/en/article/4500526

Download Persian Version:

https://daneshyari.com/article/4500526

Daneshyari.com

https://daneshyari.com/en/article/4500526
https://daneshyari.com/article/4500526
https://daneshyari.com

