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a b s t r a c t

Stochastic simulation of biological systems proceeds by repeatedly generating sample paths or trajecto-
ries of the underlying stochastic process, from which many relevant and important system properties can
be obtained. While a great deal of research is targeted towards accelerated trajectory generation, issues
concerned with the variability across trajectories are often neglected. Advanced methods for properly
quantifying the statistical accuracy and determining a reasonable number of trajectories are hardly
addressed formally in the context of biological system simulation, though mathematical statistics pro-
vides a large body of powerful theory. We invoke this theory and show how mathematically well-
founded sequential estimation approaches serve for systematically generating enough but not too many
trajectories for achieving a certain prescribed accuracy. The practical applicability is demonstrated and
illustrated by numerical examples through simulation studies of an immigration-death process and a
gene regulatory network.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Stochastic processes are well suited for modeling various differ-
ent kinds of biological systems such as population dynamics,
epidemics, or chemical reaction kinetics [1–8]. In particular,
branching processes, birth-and-death processes, or more general
continuous-time Markov chains, where the system dynamics in
terms of the state probabilities’ time derivatives are described by
the Kolmogorov differential equations, have a long tradition in
biology.

Stochastic modeling of population dynamics, in particular by
birth-and-death processes, has been pioneered by Kendall [9–11]
and further advanced by [12,13]. In particular, Kendall [11] showed
how to generate realizations of birth-and-death processes, that is,
how to simulate them. Similarly, stochastic epidemic modeling
starts at the latest in the early 1950s [14,15] and stochastic chem-
ical reaction kinetics can be traced back yet to the 1940s and it
occasionally occurred over the following three decades [16–23].
As a milestone, Gillespie [24–26] expressed the Kolmogorov differ-
ential equations in terms of the chemical master equation and
proved the accordance with the general theory of thermodynamics.
Hence, molecular reactions are undoubtedly subject to inherent
randomness. Gillespie also proposed stochastic simulation via gen-
erating trajectories according to the stochastic dynamics of Markov
processes, which is therefore often referred to as Gillespie’s algo-

rithm in the corresponding literature. This has significantly pro-
moted the Markovian approach and in conjunction with the
growing insight in the importance of accounting for random fluctu-
ations made it widespread in physics, chemistry and biology.

In particular, biological networks consisting of mutually related
and interacting components such as metabolic and signaling path-
ways, protein interactions, or gene regulation are constituted by
huge sets of coupled chemical reactions on the molecular level.
The quest for analyzing such complex networks in order to gain
a system-level understanding of intra- and intercellular dynamics
has culminated in the rapid emergence of systems biology, which
fosters interdisciplinary research integrating cell biology, molecu-
lar biophysics, biophysical chemistry, mathematical and computa-
tional approaches [27–32].

Over the years, more and more empirical studies as well as the-
oretical investigations have provided evidence that randomness
must not be neglected but properly taken into account, because
in many cases it captures important effects that otherwise cannot
be explained at all [33–37]. Since analytical results are seldom
available and most of the numerical approaches for solving the
Kolmogorov differential equations or the chemical master equation
typically fail due to the systems’ complexity, stochastic simulation
is today prevalent for the analysis of many stochastic biological
system models.

Stochastic simulation implies statistical uncertainty in its out-
comes. For instance, although Gillespie’s algorithm is termed exact,
its exactness is only ‘in the sense that it takes full account of the
fluctuations and correlations’ [25] of reactions (or, more generally,
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state transitions according to events) within a single simulation
run. Gillespie pointed out that it is ‘necessary to make several sim-
ulation runs from time 0 to the chosen time t, all identical with
each other except for the initialization of the random number gen-
erator’. In fact, the reliability of simulation results strongly de-
pends on a sufficiently large number of simulation runs. The
same is valid for simulations of any stochastic process. So, we
can abstract away from specific applications and only need to as-
sume that the system at any time t P 0 is described by a (typically
multidimensional) random variable XðtÞ and the systems evolves
according to a stochastic process ðXðtÞÞtP0. We do not even require
the stochastic process to be Markovian.

In practice, the number of simulation runs is usually chosen
very large but somewhat arbitrarily. With an inappropriately cho-
sen number of simulation runs there is a great danger of either
wasting computer time or of drawing wrong conclusions from
unreliable estimates. More precisely, performing many more runs
than necessary means a significant waste of computer time. On
the other hand, stopping simulations too early and performing
too less simulation runs renders the results meaningless. Hence,
it is highly desirable to find ways for avoiding both. Precisely
expressing the meaning of a sufficiently large but not unnecessar-
ily large number of simulation runs as well as determining such a
suitable number calls for an appropriate formalization in terms of
mathematical statistics. Approximate stochastic simulation meth-
ods do not address this issue but aim at accelerated trajectory gen-
eration for speeding up single simulation runs; repeated
simulation runs are still necessary and the systematical choice of
a suitable number remains crucial.

We address the statistical accuracy of stochastic simulations,
which is of major importance because it is in fact the only mathe-
matical way to investigate the reliability of simulation results. In
either case, stochastic simulation tends to be computationally
expensive and provides statistical estimates. Mathematically, it
constitutes a statistical estimation procedure implying that the re-
sults are subject to statistical uncertainty. We consider sequential
estimation for obtaining estimates with prescribed statistical accu-
racy in terms of confidence intervals with prescribed absolute or
relative half width. Rather than fixing the number of simulation
runs a priori, mathematically well-founded stopping rules apply
and automatically terminate the simulation after a suitable num-
ber of simulation runs.

In the next section, we provide an appropriate mathematical
framework for quantifying the statistical accuracy of stochastic
simulation results and the requirements for prescribed statistical
accuracy. Sequential estimation procedures as well as related com-
putational issues are presented in Section 3. These procedures are
applied to the stochastic simulation of an immigration-death pro-
cess and a gene regulatory network. Numerical examples are given
in Section 4. Finally, Section 5 concludes the paper and discusses
topics of further research.

2. Statistical accuracy of stochastic simulation results

The effort for a stochastic simulation is the effort for generating
a single trajectory (i.e. performing one simulation run) times the
number of required runs in order to obtain reasonably reliable re-
sults. Our concern is the largely neglected question how many sim-
ulation runs are actually required for sufficiently reliable
simulation results, which we shall cast in terms of prescribed sta-
tistical accuracy. For this purpose, the first step is to consider a
suitable mathematical framework and the second is to come up
with well-founded and efficiently implementable techniques such
that the prescribed accuracy is safely achieved without substan-
tially wasting computer time.

Mathematically, a stochastic simulation is a statistical estima-
tion using computers. It generates realizations of random variables
with the help of random number generators. Similarly as for obser-
vations from laboratory experiments, several properties can be de-
rived from the realizations. Thus, from a statistical point of view
repeated laboratory experiments and stochastic simulation are
equivalent. The only difference is in the way realizations are gen-
erated. In a laboratory experiment they are generated within a
physical real life environment whereas a stochastic simulation imi-
tates real life environments by using appropriate probabilistic
rules.

2.1. Characteristics of stochastic simulation

In practice, each simulation run is finished at some time and the
outcome is a finite sequence of states where state changes are trig-
gered by events like births, deaths, reactions, or the like, depending
on the specific application. More precisely, a simulation run gener-
ates realizations of the system state at event times t0; t1; . . . ; tk,
which are itself realizations of the random event times
T0; T1; . . . ; Tk whose differences are usually independent and in
the particular case of Markov processes exponentially distributed.
The specific termination condition depends on the actual scope of
the simulation study. In general, it is determined by a random
stopping time defined in accordance with the quantity of interest
to be observed in the simulation run. Therefore, also the number
of events is in general random. Often, the process ðXðtÞÞtP0 is con-
sidered over a predefined time horizon, in which case the random
stopping time becomes deterministic while the number of events
and the event times are still random. But stochastic simulation is
not limited to this case.

We particularly emphasize the generality and the power of sto-
chastic simulation as it is often wrongly claimed that stochastic
simulation can only provide estimates for the expectation of XðtÞ
for some t, that is, for the mean number of the quantity repre-
sented by XðtÞ such as the population of molecules, bacteria, plants,
animals, humans, or whatever is modeled by the process. This is
not true. Stochastic simulation can also provide estimates for,
e.g., the time until the population has reached a specific number
or has been exhausted (died out), marginal probabilities and even
whole probability distributions. In general, we can address any
imageable property that has a suitable probabilistic representation
meaning that it can be observed and appropriately extracted from
trajectories. Probably it is misleading that stochastic simulation
typically addresses the estimation of expectations. But in general
these are expectations of an arbitrary functional of the underlying
stochastic process ðXðtÞÞtP0. In fact, various properties and almost
all quantities of potential interest and practical relevance can be
mathematically described as a functional of a stochastic process,
that is as a measurable function that depends on the trajectories,
cf. [38–41]. As a random variable is nothing else than a measurable
function, the quantity of interest can be conveniently defined as
random variable Y and stochastic simulation then indeed deals
with estimating its expectation. We also note that stochastic sim-
ulation is an advanced theory in itself that is applied to far more
general properties than mean numbers of certain items in diverse
scientific domains such as, amongst many others, computer perfor-
mance evaluation, operations research, insurance risk, mathemat-
ical finance, see, e.g., [42–47].

Mathematical statistics comes into play because each time a
new realization is generated, it is different in general. That is, there
is variability across the trajectories. Also the quantity of interest as
observed in any realization will rarely ever exactly coincide with
the ‘true’ value. Statistical methods are required to assure that no
wrong conclusions are drawn from a few accidentally untypical
experiments. According to classical statistics one builds an estima-

44 W. Sandmann / Mathematical Biosciences 221 (2009) 43–53



Download English Version:

https://daneshyari.com/en/article/4500558

Download Persian Version:

https://daneshyari.com/article/4500558

Daneshyari.com

https://daneshyari.com/en/article/4500558
https://daneshyari.com/article/4500558
https://daneshyari.com

